The concentrations of heavy metals in sediments and marine organisms in Daya Bay were investigated, and the Monte Carlo method was used to analyze the uncertainty of the results of geo-accumulation characteristics and ecological and health risks. The mean concentrations of metal elements in sediments were in the following order: Zn > Cr > Cu > As > Cd > Hg, while those in marine organisms were Zn > Cu > As > Cr ≈ Cd > Hg. The geo-accumulation index (Igeo) indicated that the primary pollutant was Hg, with 5.46% moderately polluted, and 39.52% for unpolluted to moderately polluted. Potential ecological risks (RI) were between low and high risks, and the contributions of Hg, Cd, and As to ecological risks were 50.85%, 33.92%, and 11.47%, respectively. The total hazard coefficients (THQ) were less than 1, but on the basis of total carcinogenic risks (TCR), the probability of children and adults exceeded the unacceptable risk threshold of 22.27% and 11.19%, respectively. Sensitivity analysis results showed that the concentrations of carcinogenic elements contributed to risk in the order of As > Cd > Cr. Therefore, in order to effectively control heavy metals contamination in Daya Bay, it is necessary to strengthen the management of Hg, Cd, and As emissions.
Benthic sediment bacteria are important drivers for material circulation and energy flow in aquatic ecosystem, and they are sensitive to environmental changes. Large scale suspended mariculture in coastal waters induces high organic loading to the sediment through biodeposition, and causes changes in sediment biogeochemical features. However, the impacts of mariculture on sediment bacterial communities are not fully understood. In the present study, sediment samples were collected from three coastal semi-enclosed bays of China, i.e., Sanggou Bay, Daya Bay, and Maniao Bay, where large scale mariculture were carried out since the 1980s. High-throughput sequencing was used to examine the spatial and seasonal variations of bacterial communities. The results indicated that the dominant phyla of three bays were Proteobacteria (39.18–47.21%), Bacteroidetes (9.91–19.25%), and Planctomycetes (7.12–13.88%). Spatial variations played a greater role in shaping the bacterial communities than seasonal variation. The bacterial diversity indices (Chao1, Pielou’s evenness, and Shannon-Wiener index) of Sanggou Bay were significantly lower than those of Daya Bay and Maniao Bay. For seasonal variation, bacterial diversity indices in spring were significantly lower than that in autumn. Five keystone taxa belonging to Planctomycetes, Alphaproteobacteria, and Acidobacteria were identified in Sanggou Bay. Temperature, particulate organic carbon, pH, and salinity were the most important environmental factors shaping the spatial and seasonal variations of bacterial communities in the studied areas. The abundances of bacteria, particularly Bacteroidetes, Gammaproteobacteria, and Deltaproteobacteria, were significantly correlated with the mariculture-driven chemical properties of the sediment. These results indicated that intensive mariculture could induce profound and diverse impacts on the bacterial communities, and therefore modify their role in marine ecosystem. The interactions between mariculture and sediment bacterial communities should be considered in regard to mariculture management and carrying capacity.
Daya Bay, especially in the northwestern region, which is a nature reserve with larval economic fish and shrimp populations, is no longer an unpolluted marine environment due to the recent increases in anthropogenic activities. This study collected seasonal surface sediment samples from 20 sites in northwestern Daya Bay to evaluate pollution and ecological risks and to identify possible sources and transport pathways of heavy metals (Cd, Pb, Cr, Cu, Zn, Hg, As). The results showed that all the heavy metal concentrations were below the established primary standard criteria, except for concentrations of Cr in spring, as well as Cu and Zn in autumn at several sampling stations, which had excess rates of 35, 4.76, and 4.76%, respectively. The geoaccumulation index (Igeo) values of heavy metals indicated that all sites had unpolluted to moderate pollution levels. In comparison to the samples collected in autumn, those in spring experienced a higher degree of pollution, particularly Cr and As. The ecological risk indices of heavy metals in sediments ranged from 225.86 to 734.20 in spring and from 196.69 to 567.52 in autumn, suggesting that most sites had a moderate ecological risk or a considerable ecological risk, and very few a had high ecological risk. Moreover, ArcGIS10.2 software was used to visualize their spatial distribution, and the results were similar in both spring and autumn. The results of the Pearson correlation analysis and principal component analysis showed that Cu, Hg, and Pb might be affected by anthropogenic activities, and As might be derived from natural sources such as atmospheric inputs. A cluster analysis showed that heavy metals were mainly affected by the negative impacts of human beings on the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.