Accurate identification of core fucosylation on Nglycopeptides remains challenging due to fucose migration during mass spectrometry analysis. Here, we introduce a simple and straightforward method for core-fucosylated glycopeptide recognition based on the relative intensities of Y1+Fuc ions compared with their corresponding Y1 ions (labeled as Y1+Fuc/Y1 or simply Y1F/Y1 ratio > 0.1) in low-energy HCD-based spectra. The method was first developed by systematically evaluating the influence of fucose migration on the Y1F ion from antenna fucoses based on the distribution of the Y1F/Y1 ratios in the MS/MS spectra of antenna-fucosylated glycopeptides from Fut8 −/− mouse brain. The feasibility of the method was then confirmed by using two standard glycoproteins, comparison with glycopeptides in Fut8 +/+ mouse brain with/without in silico core-fucosylation removal, and Y1F/Y1 ratio alterations under a lower HCD energy. This method will be applicable to the manual interpretation and software-based high-throughput analysis of core-fucosylated glycopeptides.
O-Acetylation is a common modification of sialic acid, playing a significant role in glycoprotein stability, immune response, and cell development. Due to the lack of efficient methods for direct analysis of O-acetylated sialoglycopeptides (O-AcSGPs), the majority of identified O-acetylated sialic acids (O-AcSia) until now had no glycosite/glycoprotein information. Herein, we introduced a new workflow for precise interpretation of O-AcSGPs with probability estimation by recognizing the characteristic B and Y ions of O-AcSias. With further optimization of mass spectrometry parameters, the method allowed us to identify a total of 171 unique O-AcSGPs in mouse serum. Although the majority of these O-AcSGPs were at a relatively low abundance compared with their non-O-acetylated states, they were mainly involved in peptidase/endopeptidase inhibitor activities. The method paves the way for large-scale structural and functional analyses of site-specific O-AcSias in various complex samples as well as further identification of many other similar chemical modifications on glycoproteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.