Solar photovoltaic (PV) applications are gaining a great interest worldwide and dominating the renewable energy sector. However, the solar PV panels’ performance is reduced significantly with the increase in their operating temperature, resulting in a substantial loss of energy production and poor economic scenarios. This research contributes to overcoming the PV performance degradation due to the temperature rise. This work involves experimental and theoretical studies on cooling of PV panels using the evaporative cooling (EC) principle. A new EC design to cool the bottom surface of a PV panel was proposed, fabricated, tested, and modeled. A series of experimentation readings under real conditions showed the effectiveness of the method. A steady state heat and mass transfer model was implemented and compared with the experimental data. Fair agreement between the results of the modelling and experimental work was observed. It was found that the temperature of the PV panel can be decreased by 10 °C and the power improvement achieved was 5%. Moreover, the EC helps to stabilize the panels’ temperature fluctuation, which results in a better regulation of electrical power output and reduces the uncertainty associated with solar PV systems.
In this research, Renewable Energy (RE) represents the existing power systems with different levels. However, because of the intermittent nature of these sources, it is necessary to analyze systems' reliability with different RE penetration levels. This work presented a simulation method for reliability evaluation of renewable penetrated power systems. Some reliability indices were proposed for the case of power systems with renewable power plants. The adopted approach used the historical data of renewable energy resources, mainly wind and solar to estimate the power that can be generated and compared with the demand to find the power mismatch. Therefore, this approach can be utilized to determine the penetration level that renewable energy can be shared, and it also helps the system operators in deciding the percentage of the generation that RE power plant can provide. 41Journal of Power and Energy Engineering for conventional generation and will continue to decline with recent technical development.Since most of renewable resources are intermittent in nature, it is advantageous to utilize more than one resource when available. Hybridizing of renewable resources improves the power system reliability, efficiency and economy, especially in places with good characteristics of sun and wind.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.