Salivary gland carcinoma (SGC) is rare cancer, constituting 6% of neoplasms in the head and neck area. The most responsible genes and pathways involved in the pathology of this disorder have not been fully understood. We aimed to identify differentially expressed genes (DEGs), the most critical hub genes, transcription factors, signaling pathways, and biological processes (BPs) associated with the pathogenesis of primary SGC. The mRNA dataset GSE153283 in the Gene Expression Omnibus database was re-analyzed for determining DEGs in cancer tissue of patients with primary SGC compared to the adjacent normal tissue (adjusted p-value < 0.001; |Log2 fold change| > 1). A protein interaction map (PIM) was built, and the main modules within the network were identified and focused on the different pathways and BP analyses. The hub genes of PIM were discovered, and their associated gene regulatory network was built to determine the master regulators involved in the pathogenesis of primary SGC. A total of 137 genes were found to be differentially expressed in primary SGC. The most significant pathways and BPs that were deregulated in the primary disease condition were associated with the cell cycle and fibroblast proliferation procedures. TP53, EGF, FN1, NOTCH1, EZH2, COL1A1, SPP1, CDKN2A, WNT5A, PDGFRB, CCNB1, and H2AFX were demonstrated to be the most critical genes linked with the primary SGC. SPIB, FOXM1, and POLR2A significantly regulate all the hub genes. This study illustrated several hub genes and their master regulators that might be appropriate targets for the therapeutic aims of primary SGC.
Background. Mitogen-activated protein kinase 3 (MAPK3) mediates the onset, progression, metastasis, drug resistance, and poor prognosis in various malignancies, including glioma, liver, ovarian, thyroid, lung, breast, gastric, and oral cancers. Negative regulation of MAPK3 expression using miRNAs has led to therapeutic effects in cancer. Objectives. The present study performed molecular docking and dynamics simulation to identify potential MAPK3 inhibitors from natural flavonoids, possibly leading to drug development in cancer therapy. Methods. A computational drug discovery approach was performed using the AutoDock tool to identify potential MAPK3 inhibitors from 46 plant-based flavonoids. A cross-validation study was executed using the Schrödinger Maestro docking tool. Molecular dynamics (MD) was executed to evaluate the stability of docked poses between the top-ranked compounds and the MAPK3 catalytic domain. Interactions among the most potent MAPK3 inhibitors and residues within the receptor’s active site were studied using the BIOVIA Discovery Studio Visualizer before and after 100 ns MD simulations. Results. Kaempferol 3-rutinoside-4′-glucoside, kaempferol 3-rutinoside-7-sophoroside, rutin, and vicenin-2 exhibited a magnificent binding affinity to the receptor’s active site. In addition, the stability of the docked poses of these compounds seemed to be stable after ∼45 ns computer simulations. Conclusion. The present study suggests that kaempferol 3-rutinoside-4′-glucoside, kaempferol 3-rutinoside-7-sophoroside, rutin, and vicenin-2 could strongly bind to the MAPK3 catalytic site and could be assigned as a potent inhibitor for MAPK3. These findings may be helpful in the treatment of various cancers. However, further validation experiments are needed.
Objective. Ameloblastoma is a benign odontogenic tumor that may lead to ameloblastic carcinoma. is study aimed to determine potential signaling pathways and biological processes, critical genes and their regulating transcription factors (TFs), and miRNAs, as well as protein kinases involved in the etiology of primary ameloblastoma. Methods. e dataset GSE132472 was obtained from the GEO database, and multivariate statistical analyses were applied to identify di erentially expressed genes (DEGs) in primary ameloblastoma tissues compared to the corresponding normal gingiva samples. A protein-protein interaction (PPI) map was built using the STRING database. e Cytoscape software identi ed signi cant modules and the hub genes within the PPI network. Gene Ontology annotation and signaling pathway analyses were executed by employing the DAVID and Reactome databases, respectively. Signi cant TFs and miRNAs acting on the hub genes were identi ed using the iRegulon plugin and MiRWalk 2.0 database, respectively. A protein kinase enrichment analysis was conducted using the online Kinase Enrichment Analysis 2 (KEA2) web server. e approved drugs acting on the hub genes were also found. Results. A total of 1,629 genes were di erentially expressed in primary ameloblastoma (P value <0.01 and |Log2FC| > 1). HRAS, CDK1, MAPK3, ERBB2, COL1A1, CYCS, and BRCA1 demonstrated high degree and betweenness centralities in the PPI network. E2F4 was the most signi cant TF acting on the hub genes. BTK was the protein kinase signi cantly enriched by the TFs. Cholesterol biosynthesis was considerably involved in primary ameloblastoma. Conclusions. is study provides an intuition into the potential mechanisms involved in the etiology of ameloblastoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.