The presence of volatile organic compounds (VOCs) in unprocessed natural gas (NG) is well documented; however, the degree to which VOCs are present in NG at the point of end use is largely uncharacterized. We collected 234 whole NG samples across 69 unique residential locations across the Greater Boston metropolitan area, Massachusetts. NG samples were measured for methane (CH 4 ), ethane (C 2 H 6 ), and nonmethane VOC (NMVOC) content (including tentatively identified compounds) using commercially available USEPA analytical methods. Results revealed 296 unique NMVOC constituents in end use NG, of which 21 (or approximately 7%) were designated as hazardous air pollutants. Benzene (bootstrapped mean = 164 ppbv; SD = 16; 95% CI: 134–196) was detected in 95% of samples along with hexane (98% detection), toluene (94%), heptane (94%), and cyclohexane (89%), contributing to a mean total concentration of NMVOCs in distribution-grade NG of 6.0 ppmv (95% CI: 5.5–6.6). While total VOCs exhibited significant spatial variability, over twice as much temporal variability was observed, with a wintertime NG benzene concentration nearly eight-fold greater than summertime. By using previous NG leakage data, we estimated that 120–356 kg/yr of annual NG benzene emissions throughout Greater Boston are not currently accounted for in emissions inventories, along with an unaccounted-for indoor portion. NG-odorant content ( tert -butyl mercaptan and isopropyl mercaptan) was used to estimate that a mean NG-CH 4 concentration of 21.3 ppmv (95% CI: 16.7–25.9) could persist undetected in ambient air given known odor detection thresholds. This implies that indoor NG leakage may be an underappreciated source of both CH 4 and associated VOCs.
Methane leaks in natural gas systems are lowhanging fruit for near-term, locally driven climate policy. Recent work suggests this emissions source is larger than previously believed and that repairing a small number of high emitters can cost-effectively reduce system-wide leakage. How successful are these repairs on the ground? Here, we assess the effectiveness of repair policies in the Massachusetts distribution system. Our analysis leverages state-wide utility data, on-site empirical measurements, stakeholder interviews, and document and legal analysis. We use these mixed methods to investigate the rate of repair failure, where a gas utility identifies and fixes a leak, but on-site emissions are not eliminated. We find that repair failures are relatively common, yet they are repeatedly neglected in policy. By not accounting for repair failures, policy may overestimate the effectiveness of distribution system repairs in meeting local greenhouse gas reduction targets. These results also underscore the importance of data transparency for monitoring and verifying subnational climate policies.
Building electrification is essential to many full-economy decarbonization pathways. However, current decarbonization modeling in the United States (U.S.) does not incorporate seasonal fluctuations in building energy demand, seasonal fluctuations in electricity demand of electrified buildings, or the ramifications of this extra demand for electricity generation. Here, we examine historical energy data in the U.S. to evaluate current seasonal fluctuation in total energy demand and management of seasonal fluctuations. We then model additional electricity demand under different building electrification scenarios and the necessary increases in wind or solar PV to meet this demand. We found that U.S. monthly average total building energy consumption varies by a factor of 1.6×—lowest in May and highest in January. This is largely managed by fossil fuel systems with long-term storage capability. All of our building electrification scenarios resulted in substantial increases in winter electrical demand, enough to switch the grid from summer to winter peaking. Meeting this peak with renewables would require a 28× increase in January wind generation, or a 303× increase in January solar, with excess generation in other months. Highly efficient building electrification can shrink this winter peak—requiring 4.5× more generation from wind and 36× more from solar.
Building electrification is essential to many full-economy decarbonization pathways. Current decarbonization modeling does not incorporate fluctuations in building energy demand. U.S. monthly average total building energy consumption varies by a factor of 1.6x—lowest in May and highest in January. This is largely managed by fossil fuel systems with storage capability. Under all prototypical coefficients of performance (COPs), electrifying buildings substantially increases winter electrical demand, enough to switch the grid from summer to winter peaking. Meeting this with renewables would require a 28x increase in January wind generation, or a 303x increase in January solar, with excess generation in other months. Technologies with a COP of 6 shrink the winter peak—requiring 4.5x more generation from wind and 36x more from solar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.