The design of the machines and equipment used in harvest and post-harvest processing should be compatible with the physical, mechanical and rheological characteristics of the fruits and vegetables. In machine design for agricultural products, several characteristics of relevant products and seeds should be known ahead. Designers can either measure all these design parameters one by one, or they may use intelligent systems to estimate such parameters. Neural networks (NNs) are new computational tools that provide a quick and accurate means of physical properties prediction of agricultural materials, and have been shown to perform well in comparison with traditional methods. In this research, some physical properties of pumpkin (Cucurbita pepo L.) seeds, including linear dimensions, volume, surface and projected area, geometric mean diameter and sphericity were calculated tridimensional in lab conditions. Then, prediction of these parameters was carried out using NNs. The research was divided into two parts; experimental investigation and simulation analysis with NNs. Back Propagation Neural Network (BPNN) and Radial Basis Neural Network (RBNN) structures were employed to estimate physical parameters of the pumpkin seeds. The Root Mean Squared Error (RMSE) was 0.6875 for BPNN and 0.0025 for RBNN structures. The RBNN structure was superior in prediction and could be used as an alternative approach to conventional methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.