Antimicrobial mixed dressings have traditionally been used to minimize bacterial infection of burns and other wounds. This study presents the advancement of biocompatible chitosan/silk sericin (CHT/SS) scaffolds combined with lauric acid (LA) and zinc oxide nanoparticles (nZnO) for the successful wound dressing applications. Antibacterial assay results showed that the diameters of the inhibition zone increased from 2 ± 0.4 to 7 ± 0.1 mm for Escherichia coli, as well as from 2.5 ± 0.2 to 6 ± 0.4 mm for Staphylococcus aureus while CHTS/SS/100nZnO compared to CHT/SS/0.01LA. The results not only showed excellent inhibition against Gram-positive and Gram-negative bacterial growth but also revealed improved proliferation and extended viability for HaCaT cells.
As an effort to create the next generation of improved skin graft materials, in this study, we modified the surfaces of a previously investigated material, silk fibroin, using a NaOH alkaline treatment to obtain a biologically inspired nanofeatured surface morphology. Such surfaces were characterized for roughness, energy, and chemistry. In addition, keratinocyte (skin-forming cells) adhesion and proliferation on such nanofeatured silk fibroin wound dressings were studied in an initial attempt to determine the promotion of an epidermal cover on the wound bed to form a new epidermal barrier. Dermal fibroblast adhesion and proliferation were also studied to assess the ability of nanostructured silk fibroin to replace damaged dermal tissue in chronic wounds (i.e., for diabetic foot ulcers). Results demonstrated for the first time that keratinocyte and fibroblast cell density was greater on nanofeatured silk fibroin membranes compared with non-treated silk fibroin surfaces. The enhancement in cellular functions was correlated with an increase in silk surface nanotopography, wettability and change in chemistry after NaOH treatment. Due to the present promising results, the newly developed nanofeatured silk fibroin membranes are exciting alternative skin graft materials which should be further studied for various skin patch and wound dressing applications.
The principle of guided bone regeneration (GBR) in orthopedic, cranio-maxillofacial and dental tissue engineering applications is to create a secluded space for the treatment of large bone defects while excluding fibrous connective tissue formation at the defect area. In dental surgeries, a GBR membrane is placed near the dental implant in post-extraction sockets to grow new bone at the implant site, along with inhibiting infection due to the microbial nature of the mouth flora. Poly[(R)-3-hydroxybutyric acid] (PHB) is a natural polyester synthesized by a wide variety of microorganisms which has been proposed for various biomedical applications. In this study, to improve the performance of PHB as a GBR, a NaOH based alkaline treatment was designed to create nanofeatured PHB membranes. The newly fabricated nanofeatured PHB membranes were investigated for GBR applications. The results showed that a quick, simple, and inexpensive sodium hydroxide treatment modified the nanostructured surface morphology and chemistry of the PHB membranes by inducing hydrolysis of the ester bonds in the PHB backbone creating carboxylic surface functional groups, which increased the hydrophilicity of the PHB surfaces. Cytocompatibility studies showed increased proliferation of human osteoblasts (bone forming cells) on the NaOH treated PHB membranes compared to the untreated ones. Importantly, in vitro bacterial studies with Staphylococcus aureus (S. aureus) indicated that the NaOH-treated PHB surfaces inhibited S. aureus growth more than 60% after 48 hours of culture compared to the untreated PHB membrane. Thus, this study, for the first time, showed that nanofeatured PHB membranes modified with a NaOH treatment may be a useful anti-bacterial, osteoconductive GBR membrane for numerous orthopedic, cranio-maxillofacial and dental tissue engineering applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.