The development of accurate chemical kinetic models capable of predicting the combustion of methane and dimethyl ether in common combustion environments such as compression ignition engines and gas turbines is important as it provides valuable data and understanding of these fuels under conditions that are difficult and expensive to study in the real combustors. In this work, both experimental and chemical kinetic model-predicted ignition delay time data are provided covering a range of conditions relevant to gas turbine environments (T = 600 − 1600 K, p = 7 − 41 atm, φ = 0.3, 0.5, 1.0, and 2.0 in 'air' mixtures). The detailed chemical kinetic model (Mech 56.54) is capable of accurately predicting this wide range of data, and it is the first mechanism to incorporate high-level rate constant measurements and calculations where available for the reactions of DME. This mechanism is also the first to apply a pressure-dependent treatment to the low-temperature reactions of DME. It has been validated using available literature data including flow reactor, jet-stirred reactor, shock-tube ignition delay times, shock-tube speciation, flame speed, and flame speciation data. New ignition delay time measurements are presented for methane, dimethyl ether, and their mixtures; these data were obtained using three different shock tubes and a rapid compression machine. In addition to the DME/CH 4 blends, high-pressure data for pure DME and pure methane were also obtained. Where possible, the new * address:
The low-temperature oxidation of n-heptane, one of the reference species for the octane rating of gasoline, was investigated using a jet-stirred reactor and two methods of analysis: gas chromatography and synchrotron vacuum ultra-violet photo-ionization mass spectrometry (SVUV-PIMS) with direct sampling through a molecular jet. The second method allowed the identification of products, such as molecules with hydroperoxy functions, which are not stable enough to be detected using gas chromatography. Mole fractions of the reactants and reaction products were measured as a function of temperature (500-1100K), at a residence time of 2s, at a pressure of 800 torr (1.06 bar) and at stoichiometric conditions. The fuel was diluted in an inert gas (fuel inlet mole fraction of 0.005). Attention was paid to the formation of reaction products involved in the low temperature oxidation of n-heptane, such as olefins, cyclic ethers, aldehydes, ketones, species with two carbonyl groups (diones) and ketohydroperoxides. Diones and ketohydroperoxides are important intermediates in the low temperature oxidation of n-alkanes but their formation have rarely been reported. Significant amounts of organic acids (acetic and propanoic acids) were also observed at low temperature. The comparison of experimental data and profiles computed using an automatically generated detailed kinetic model is overall satisfactory. A route for the formation of acetic and propanoic acids was proposed. Quantum calculations were performed to refine the consumption routes of ketohydroperoxides towards diones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.