The treatment of acidic (pH 6.5-3), sulfate- (2-3 g/L), Zn- and Cu- (total metal 0-500 mg/L) containing wastewater was studied in a four-stage anaerobic baffled reactor (ABR) at 35 °C for 250 days. Ethanol was supplemented (COD/SO4(2-) = 0.67) as carbon and electron source for sulfate reducing bacteria. Sulfate reduction, COD oxidation and metal precipitation efficiencies were 70-92, 80-94 and >99%, respectively. The alkalinity produced from sulfidogenic ethanol oxidation increased the wastewater pH from 3.0 to 7.0-8.0. The electron flow from organic oxidation to sulfate averaged 87%. Decreasing feed pH to 3 and increasing total metal concentrations to 500 mg/L did not adversely affect the performance of ABR and sufficient alkalinity was produced to increase the effluent pH to neutral values. More than 99% of metals were precipitated in the form of metal-sulfides. Accumulation of precipitated metals in the first compartment allowed metal recovery without disturbing reactor performance seriously.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.