At present, there are few reports on the profiling mechanism that can achieve surface envelope profiling along the surface of a shaft whose radius is constantly changing. Existing profiling mechanisms cannot achieve this function. To this end, a novel deployable arc profiling mechanism is presented in this paper. The mechanism can realize centering deployment along the shaft with a changing radius. The radius of the deployable arc can be adapted to the continuous change of shaft radius, and its surface can always maintain the arc shape for surface envelope profiling. The mechanism is mainly composed of compound cams. Each cam contains multiple grooves, and each groove connects to an arc support linkage. The arc support linkage is controlled by the compound motion of cams in different layers. The pitch curve of each groove is designed by applying the method of relative motion and inverse solution and obtained various parameter equations of the mechanism. The feasibility of this mechanism is verified by analysis, experiment, and application test. The results show that the proposed deployable arc profiling mechanism can achieve the design purpose and the profiling accuracy is kept above 96.425%.
To obtain the appropriate mechanized cutting region for banana dehanding, the methods of X-ray Computed Tomography (CT), Paraffin-embedded tissue section, and scanning electron microscopy (SEM) were adopted to observe the morphological and anatomical characteristics of vascular bundles of the banana crown. The results indicated that the crown can be divided into three regions, viz., the central stalk–crown transition region (CSCTR), the crown expansion region (CER), and the crown–finger transition region (CFTR). According to the obtained characteristics, the cutting mechanical properties are found to be affected by the relative angle between the vascular bundle and cutter (RAVBC) and the vascular bundle density. In CSCTR, due to the opposite change of RAVBC and density, the cutting mechanical properties become unstable and the cutting energy decreases gradually from 4.30 J to 2.57 J. While in CER, the cutting mechanical properties tend to be stable, and the cutting energy varies in a small range (2.83–2.92 J), owing to the small changes of RAVBC and density. When the vascular bundles cross from the CER to CFTR, the cutting energy increases with the increase of RAVBC and density, which varies from 3.37 to 4.84 J. Accordingly, the appropriate cutting region for dehanding, which can reduce the energy consumption and improve the cutting efficiency, is ascertained to be between CSCTR and CER.
Aiming at the problem that the banana de-handing device has poor radial deployment to the banana bunch stalk during the mechanized banana de-handing procedure, this paper presented a ring deployable mechanism based on a set of planar seven-bar linkages. It consists of multiple basic deployable units, which has great folding/deploying performance and is suitable for manufacturing a banana de-handing device, the diameter of which can be variably larger. The kinematics analysis of the mechanism was done, and the trajectory in space was obtained. When the mechanism is fully deployed, the diameter is 164 mm. The ratio of the folded height to the deployed diameter is 0.732, the ratio of the folded diameter to the deployed diameter is 0.262, and the ratio of the folded volume to the maximum of the deployed volume is 0.069. An experimental prototype of 500, 500, and 768 mm in length, width, and height was manufactured, and the deploying performance was analyzed to show the feasibility. Finally, experimental results show that 71.43% of the banana hands are de-handed successfully. The mechanism has a great deploying effect on banana bunch stalk, and the quality of the banana crown incision is good.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.