Lateral heterostructures of 2D materials have several interesting properties and potential applications, and they are usually fabricated by chemical vapor deposition. However, it still remains a great challenge to fabricate 2D lateral heterostructures with well-controlled patterns and sharp interfaces. Herein, we found that the 2D α-MoC crystal, a recently emerging 2D superconductor, experiences a phase transition from the α phase to β phase on electron beam irradiation in a transmission electron microscope because of the migration of carbon atoms among the molybdenum octahedrons. Combined with first-principles calculations, the carbon atom migration paths and the corresponding energy barriers were discussed. Utilizing this unique phase transition property of 2D α-MoC crystal, we demonstrated the precise in situ construction of the lateral heterostructure of 2D superconducting α/β MoC with a well-controlled pattern and sharp interface using advanced aberration-corrected scanning transmission electron microscopy.
Monolayer circular graphene platelets with a grain structure gradient in the radial direction are synthesized by chemical vapor deposition on immiscible W-Cu substrates. Because of the different interactions and growth behaviors of graphene on Cu and tungsten carbide, such substrates cause the formation of grain size and orientation gradients through the competition between Cu and tungsten carbide in graphene growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.