Multiple sclerosis (MS) is an autoimmune disease characterized by inflammatory demyelinating lesions in the central nervous system. Recently, the dysregulation of alternative splicing (AS) in the brain has been found to significantly influence the progression of MS. Moreover, previous studies demonstrate that many MS-related variants in the genome act as the important regulation factors of AS events and contribute to the pathogenesis of MS. However, by far, no genome-wide research about the effect of genomic variants on AS events in MS has been reported. Here, we first implemented a strategy to obtain genomic variant genotype and AS isoform average percentage spliced-in values from RNA-seq data of 142 individuals (51 MS patients and 91 controls). Then, combing the two sets of data, we performed a cis-splicing quantitative trait loci (sQTLs) analysis to identify the cis-acting loci and the affected differential AS events in MS and further explored the characteristics of these cis-sQTLs. Finally, the weighted gene coexpression network and gene set enrichment analyses were used to investigate gene interaction pattern and functions of the affected AS events in MS. In total, we identified 5835 variants affecting 672 differential AS events. The cis-sQTLs tend to be distributed in proximity of the gene transcription initiation site, and the intronic variants of them are more capable of regulating AS events. The retained intron AS events are more susceptible to influence of genome variants, and their functions are involved in protein kinase and phosphorylation modification. In summary, these findings provide an insight into the mechanism of MS.
Glioma is a primary high malignant intracranial tumor with poorly understood molecular mechanisms. Previous studies found that both DNA methylation modification and gene alternative splicing (AS) play a key role in tumorigenesis of glioma, and there is an obvious regulatory relationship between them. However, to date, no comprehensive study has been performed to analyze the influence of DNA methylation level on gene AS in glioma on a genome-wide scale. Here, we performed this study by integrating DNA methylation, gene expression, AS, disease risk methylation at position, and clinical data from 537 low-grade glioma (LGG) and glioblastoma (GBM) individuals. We first conducted a differential analysis of AS events and DNA methylation positions between LGG and GBM subjects, respectively. Then, we evaluated the influence of differential methylation positions on differential AS events. Further, Fisher’s exact test was used to verify our findings and identify potential key genes in glioma. Finally, we performed a series of analyses to investigate influence of these genes on the clinical prognosis of glioma. In total, we identified 130 glioma-related genes whose AS significantly affected by DNA methylation level. Eleven of them play an important role in glioma prognosis. In short, these results will help to better understand the pathogenesis of glioma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.