Abstract:In this paper, a novel solar solid dehumidification/regeneration bed has been proposed, and its three regeneration methods, i.e., simulated solar radiation regeneration, microwave regeneration, and combined regeneration of the microwave and simulated solar radiation, were experimentally investigated and compared, as well as the dehumidification performance. The degree of regeneration of the proposed system under the regeneration method combining both microwave irradiation and simulated solar radiation could reach 77.7%, which was 3.77 times higher than that of the system under the simulated solar regeneration method and 1.05 times higher than that of the system under the microwave regeneration. The maximum energy efficiency of the proposed system under the combined regeneration method was 21.7%, while it was only 19.4% for the system under microwave regeneration. All these proved that the combined regeneration method of the simulated solar and microwave radiation not only improved the regeneration efficiency of the system, but also enhanced the energy efficiency. For the dehumidification performance, the maximum transient moisture removal was 14.1 g/kg, the maximum dehumidification efficiency was 68.0% and the maximum speed of dehumidification was 0.294 g/(kg·s) when the inlet air temperature was at 26.09 • C and the air relative humidity was at 89.23%. By comparing the testing results with the semi-empirical results from the Page model, it was indicated that the Page model can predict the regeneration characteristics of the novel solar solid dehumidification/regeneration bed under the combined method of microwave and simulated solar regeneration. The results of this research should prove useful to researchers and engineers to exploit the potential of solar technologies in buildings worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.