Magnetic drug targeting can be used for locoregional cancer therapy, although the limitation is minuteness of the induced force. A new and simple procedure to enhance the magnetic force is changing the shape of carrier particles. It has been mathematically proved that exerting much stronger magnetic dipoles to nanowires are more possible than to spheres with the same volume. The magnetic dipole of wires having aspect quotient (ratio of length to diameter) of 3 is higher than the spheres of the same volume. Nanowires with α=5 have magnetic dipoles 1.95times greater than the spheres with the same volume. At a fixed radius, the magnetic dipole increases with the volume of the drug carrier. Magnetic targeting depth is an important parameter depending on the aspect quotient α of particles. Calculations show that the depth of targeting can exceed 8.5cm if a nanowire with 15nm radius and length larger than 150nm is used as the drug carrier. This depth is 1.7times more than that reported by previous authors for spherical particles with the same-volume.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.