Phosphorylation is one of the most common posttranslational modification (PTM) of proteins. Main challenge of phosphoprotein detection is their low abundance comparing to abundance of unmodified proteins. The method of selected reactions monitoring (SRM) allows to perform very sensitive and selective analysis of desired PTMs. Using myelin basic protein (MBP) as a model we have developed a method for phosphoprotein detection by SRM. The method is based on obtaining of phosphoproteins in a reconstituted kinase system and following usage these phosphorylated protein as a template for the development of the SRM method. The developed method was successfully applied for detection of phosphopeptides of myelin basic protein in the samples of human brain glioma.
Current review describes recent approaches of cytochrome P450 concentration and activity evaluation. Special attention paid to modern methods of proteomic analysis such as electrophoresis and chromato-mass-spectrometry. Methods of targeted proteomic applicable for quantitative and qualitative study of P450s in biological samples as well as methods for the enzyme activity measurements are reviewed. Finally, data on correlation between certain P450 isoform content and its specific enzymatic activities were described and discussed in the review.
This study aimed on exploration of the system-wide effects of the alcohol-induced increase in the content of cytochrome P450 2E1 (CYP2E1) in the human liver on drug metabolism. Using membrane incorporation of purified CYP2E1 modified with photoreactive crosslinkers benzophenone-4-maleimide (BPM) and 4-(N-succinimidylcarboxy)benzophenone (BPS), we explored the array of its protein-protein interactions (proteome) in human liver microsomes (HLM) with chemical cross-linking mass spectrometry (CXMS). Exposure of bait-incorporated HLM samples to light was followed by isolation of the His-tagged bait protein and its cross-linked aggregates on Ni-NTA agarose. Analyzing the individual bands of SDS-PAGE slabs of thereby isolated protein with the toolset of untargeted proteomics, we detected the cross-linked dimeric and trimeric complexes of CYP2E1 with other drug-metabolizing enzymes. Among the most extensively cross-linked partners of CYP2E1 are cytochromes P450 2A6, 3A4, 2C9, and 4A11. We also detected the conjugates of CYP2E1 with UDP-glucuronosyltransferases (UGTs) 1A6, 1A9, 2B4, 2B15, and 2B17. These results demonstrate the exploratory power of the proposed CXMS strategy and corroborate the concept of tight functional integration in the human drug-metabolizing ensemble through protein-protein interactions of the constituting enzymes. Of particular interest is the observation of efficient cross-linking of CYP2E1 with CYP4A11. This enzyme plays a central role in the synthesis of vasoactive eicosanoids and its interactions with alcohol-inducible CYP2E1 may shed light on the mechanisms of alcohol-induced hypertension.
Isatin-binding activity of mice liver proteins has been investigated in the samples from the control and flight groups by using the methods of biosensor and proteomic analysis. It was found the higher isatin-binding activity in mice of flight group. The content of a number of individual isatin-binding proteins in the samples of the flight groups differ slightly from the ground control. However, in samples from animals which have weekly post-flight adaptation, the level of certain proteins was significantly increased. The latter allows us to assume that the main events in the proteome of mice (at least in subproteome of isatin-binding proteins), occurs in early post-flight period.
Accuracy of the microarray technology results is raised by using the multi-stage normalization of results. One of the principal requirements of such normalization is usage of internal standards. The routine Agilent microarray-based gene expression analysis protocol utilizes a Spike-In Kit during preparation of the samples representing a mixture of RNA fragments in different ratios. RNA probes which were synthesized in vitro conditions could be also used to establish how the magnitude of the fluorescent signal reflects the presence of RNA in the sample. A significant disadvantage of this type of standards is a difficulty of their production and the low RNA stability. In accordance with the Agilent protocol, the presence of the T7 promoter is necessary for the synthesis of labeled cRNA during sample preparation procedure. We hypothesized that we can successfully synthesize any RNA sequence having such type of promoter in its start position. Moreover, DNA sequence would serve as a matrix in this case. Using a set of different genes attached downstream of the T7-promoter in the plasmid DNA we have demonstrated in this study that such system can serve as a reliable template for the fluorescent labeled RNA sequence synthesis. In comparison with the routinely used internal RNA based controls, this template is stable, easy to manufacture and can be easily obtained in large quantities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.