Statistical static timing analysis (SSTA) is emerging as a solution for predicting the timing characteristics of digital circuits under process variability. For computing the statistical max of two arrival time probability distributions, existing analytical SSTA approaches use the results given by Clark in [8]. These analytical results are exact when the two operand arrival time distributions have jointly Gaussian distributions. Due to the nonlinear max operation, arrival time distributions are typically skewed. Furthermore, nonlinear dependence of gate delays and non-gaussian process parameters also make the arrival time distributions asymmetric. Therefore, for computing the max accurately, a new approach is required that accounts for the inherent skewness in arrival time distributions. In this work, we present analytical solution for computing the statistical max operation.1 First, the skewness in arrival time distribution is modeled by matching its first three moments to a so-called skewed normal distribution. Then by extending Clark's work to handle skewed normal distributions we derive analytical expressions for computing the moments of the max. We then show using initial simulations results that using a skewness based max operation has a significant potential to improve the accuracy of the statistical max operation in SSTA while retaining its computational efficiency.
Applying computer vision to mobile robot navigation has been studied more than twodecades. The most challenging problems for a vision-based AGV running in a complex workspaceinvolve the non-uniform illumination, sight-line occlusion or stripe damage, which inevitably resultin incomplete or deformed path images as well as many fake artifacts. Neither the fixed thresholdmethods nor the iterative optimal threshold methods can obtain a suitable threshold for the pathimages acquired on all conditions. It is still an open question to estimate the model parameters ofguide paths accurately by distinguishing the actual path pixels from the under- or oversegmentationerror points. Hence, an intelligent path recognition approach based on KPCA–BPNNand IPSO–BTGWP is proposed here, in order to resist the interferences from the complexworkspace. Firstly, curvilinear paths were recognized from their straight counterparts by means of apath classifier based on KPCA–BPNN. Secondly, an approximation method based on BTGWP wasdeveloped for replacing the curve with a series of piecewise lines (a polyline path). Thirdly, a robustpath estimation method based on IPSO was proposed to figure out the path parameters from a set ofpath pixels surrounded by noise points. Experimental results showed that our approach caneffectively improve the accuracy and reliability of a low-cost vision-guidance system for AGVs in acomplex workspace.
Abstract-Voltage and frequency scaling (VFS) for NoC can potentially reduce energy consumption, but the associated increase in latency and degradation in throughput limits its deployment. We propose flexiblepipeline routers that reconfigure pipeline stages upon VFS, so that latency through such routers remains constant. With minimal hardware overhead, the deployment of such routers allows us to reduce network frequency and save network energy, without significant performance degradation. Furthermore, we demonstrate the use of simple performance metrics to determine the optimal operation frequency, considering the energy/performance impact on all aspects of the system -the cores, the caches and the interconnection network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.