The application of 3D printing in medicine is the major area to concern in the nearest future. Namely, it is convenient to additively manufacture the Ankle-Foot Orthosis (AFO) by fused-deposition modeling 3D printer. AFO is the device, used in medicine, to help the patients rehabilitate from the foot drop disease. The shape of the AFO may vary depending on the leg and foot specifications of the patient. In this paper, three models of the AFO were designed to analyze both numerically and experimentally, those are fracture propagation, stress distribution, and deformation. The regions with the highest stress concentration were altered with the Nylon 12, and this contributed to stress reduction. Three different gait instances were considered for the numerical simulations FEA software. Then, the simplest model to prototype and its modified versions were tested by the compression machine, and the results were compared with the numerical ones. This work demonstrated the significance of the optimization of the multi-material 3D printed AFO’s performance and comfort for patients.
This paper presents the techno-economic feasibility analysis of an on-grid Photovoltaic Solar System (PVSS) subject to Mediterranean climate aging effects. The PVSS under study is considered installed on the roof of Shymkent airport, located in southern Kazakhstan. A PVSS performance degradation rate of 1.48%-per-annun was considered according to the Mediterranean climate prevailing in the location. A 25-year life-cycle cost analysis comparing the rated vs. de-rated on-grid PVSS led to a positive Net Present Value (NPV), a less than 9-year equity payback, and favorable internal rate of return (IRR) and Benefit-to-Cost (B-C) ratio in both conditions. However, the de-rated PVSS system underperformed in 16.2%, 43.5% and 20% the IRR, NPV and B-C ratio, respectively. The analysis demonstrates that despite the expected performance degradation associated to climatic aging, a convenient feed-in tariff (FIT) and attractive financial conditions, such as those present in Kazakhstan, conform a robust setting to promote on-grid PVSS in the country.
This paper presents the techno-economic feasibility analysis of an on-grid Photovoltaic Solar System (PVSS) subject to Mediterranean climate aging effects. The PVSS under study is considered installed on the roof of Shymkent airport, located in southern Kazakhstan. A PVSS performance degradation rate of 1.48%-per-annun was considered according to the Mediterranean climate prevailing in the location. A 25-year life-cycle cost analysis comparing the rated vs de-rated on-grid PVSS led to a positive Net Present Value (NPV), a less than 9-year equity payback, and favorable internal rate of return (IRR) and Benefit to Cost Ratio (BCR) in both conditions. The analysis demonstrates that despite the expected performance degradation associated to climatic aging, a convenient feed-in tariff (FIT) and attractive financial conditions, such as those present in Kazakhstan, conform a robust setting to promote on-grid PVSS in the country.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.