The study aims to enhance β-amyrin production in Saccharomyces cerevisiae by peroxisome compartmentalization. First, overaccumulated squalene was determined as a key limiting factor for the production of β-amyrin since it could inhibit the activity of β-amyrin synthase GgbAs1. Second, to mitigate the inhibition effect, the enhanced squalene synthesis pathway was compartmentalized into peroxisomes to insulate overaccumulated squalene from GgbAs1, and thus the specific titer of β-amyrin reached 57.8 mg/g dry cell weight (DCW), which was 2.6-fold higher than that of the cytosol engineering strain. Third, by combining peroxisome compartmentalization with the "push-pull-restrain" strategy (ERG1 and GgbAs1 overexpression and ERG7 weakening), the production of β-amyrin was further increased to 81.0 mg/g DCW (347.0 mg/L). Finally, through fed-batch fermentation in a 5 L fermenter, the titer of β-amyrin reached 2.6 g/L, which is the highest reported to date. The study provides a new perspective to engineering yeasts as a platform for triterpene production.
BackgroundUnderstanding the metabolic mechanism of sterols to produce valuable steroid intermediates in mycobacterium by a noncoding small RNA (sRNA) view is still limited. In the work, RNA-seq was implemented to investigate the noncoding transcriptome of Mycobacterium neoaurum (Mn) in the transformation process of sterols to valuable steroid intermediates, including 9α-hydroxy-4-androstene-3,17-dione (9OHAD), 1,4-androstadiene-3,17-dione (ADD), and 22-hydroxy-23, 24-bisnorchola-1,4-dien-3-one (1,4-BNA).ResultsA total of 263 sRNA candidates were predicted from the intergenic regions in Mn. Differential expression of sRNA candidates was explored in the wide type Mn with vs without sterol addition, and the steroid intermediate producing Mn strains vs wide type Mn with sterol addition, respectively. Generally, sRNA candidates were differentially expressed in various strains, but there were still some shared candidates with outstandingly upregulated or downregulated expression in these steroid producing strains. Accordingly, four regulatory networks were constructed to reveal the direct and/or indirect interactions between sRNA candidates and their target genes in four groups, including wide type Mn with vs without sterol addition, 9OHAD, ADD, and BNA producing strains vs wide type Mn with sterol addition, respectively. Based on these constructed networks, several highly focused sRNA candidates were discovered to be prevalent in the networks, which showed comprehensive regulatory roles in various cellular processes, including lipid transport and metabolism, amino acid transport and metabolism, signal transduction, cell envelope biosynthesis and ATP synthesis. To explore the functional role of sRNA candidates in Mn cells, we manipulated the overexpression of candidates 131 and 138 in strain Mn-9OHAD, which led to enhanced production of 9OHAD from 1.5- to 2.3-fold during 6 d’ fermentation and a slight effect on growth rate.ConclusionsThis study revealed the complex and important regulatory roles of noncoding small RNAs in the metabolism of sterols to produce steroid intermediates in Mn, further analysis of which will promote the better understanding about the molecular metabolism of these sRNA candidates and open a broad range of opportunities in the field.Electronic supplementary materialThe online version of this article (doi:10.1186/s12934-016-0462-2) contains supplementary material, which is available to authorized users.
The work facilitates the understanding of underlying genetic changes that may be responsible for steroid accumulation in M. neoaurum and is useful for its targeted genetic engineering.
Background Polycyclic triterpenoids (PTs) are common in plants, and have attracted considerable interest due to their remarkable biological activities. Currently, engineering the ergosterol synthesis pathway in Saccharomyces cerevisiae is a safe and cost-competitive way to produce triterpenoids. However, the strict regulation of ERG1 involved in the epoxidation of squalene limits the triterpenoid production. Results In this study, we found that the decrease in ERG7 protein level could dramatically boost the epoxidation of squalene by improving the protein stability of ERG1. We next explored the potential factors that affected the degradation process of ERG1 and confirmed that ERG7 was involved in the degradation process of ERG1. Subsequently, expression of four different triterpene cyclases utilizing either 2,3-oxidosqualene or 2,3:22,23-dioxidosqualene as the substrate in ERG7-degraded strains showed that the degradation of ERG7 to prompt the epoxidation of squalene could significantly increase triterpenoid production. To better display the potential of the strategy, we increased the supply of 2,3-oxidosqualene, optimized flux distribution between ergosterol synthesis pathway and β-amyrin synthesis pathway, and modified the GAL-regulation system to separate the growth stage from the production stage. The best-performing strain ultimately produced 4216.6 ± 68.4 mg/L of β-amyrin in a two-stage fed-fermentation (a 47-fold improvement over the initial strain). Conclusions This study showed that deregulation of the native restriction in ergosterol pathway was an effective strategy to increase triterpenoid production in yeast, which provided a new insight into triterpenoids biosynthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.