Thanatos-associated proteins (THAPs) are zinc-dependent, sequence-specific DNA-binding factors involved in cell proliferation, apoptosis, cell cycle, chromatin modification and transcriptional regulation. THAP11 is the most recently described member of this human protein family. In this study, we show that THAP11 is ubiquitously expressed in normal tissues and frequently downregulated in several human tumor tissues. Overexpression of THAP11 markedly inhibits growth of a number of different cells, including cancer cells and non-transformed cells. Silencing of THAP11 by RNA interference in HepG2 cells results in loss of cell growth repression. These results suggest that human THAP11 may be an endogenous physiologic regulator of cell proliferation. We also provide evidence that the function of THAP11 is mediated by its ability to repress transcription of c-Myc. Promoter reporter assays indicate a DNA binding-dependent c-Myc transcriptional repression. Chromatin immunoprecipitations and EMSA assay suggest that THAP11 directly binds to the c-Myc promoter. The findings that expression of c-Myc rescues significantly cells from THAP11-mediated cell growth suppression and that THAP11 expression only slightly inhibits c-Myc null fibroblasts cells growth reveal that THAP11 inhibits cell growth through downregulation of c-Myc expression. Taken together, these suggest that THAP11 functions as a cell growth suppressor by negatively regulating the expression of c-Myc. Cell Death and Differentiation (2009) 16, 395-405; doi:10.1038/cdd.2008 published online 14 November 2008 The THAP proteins (Thanatos-associated protein), a novel family of cellular factors, are characterized by the presence of an evolutionarily conserved protein motif. The motif designated as the THAP domain presents striking similarities with the site-specific DNA-binding domain of Drosophila P element transposase.
Erythroid differentiation-associated gene (EDAG) is a hematopoietic tissue-specific gene that is highly expressed in the earliest CD34 þ lin À bone marrow (BM) cells and involved in the proliferation and differentiation of hematopoietic cells. To investigate the role of EDAG in hematopoiesis, we established an EDAG transgenic mouse model driven by human CD11a promoter. The transgenic mice showed increased mortality with severe organ infiltration by neutrophils, and the homeostasis of hematopoiesis was broken. The myelopoiesis was enhanced with expansion of myeloid cells in BM, increased peripheral granulocytes and extramedullary myelopoiesis in spleen. In contrast to myeloid cells, the lymphoid commitment was severely impaired with the B lymphopoiesis blocked at the transition from pro/pre-B I to pre-B II stage in BM and T thymocytes development blocked at the most immature stage (DN I). Moreover, we showed that EDAG was a transcriptional regulator which had transactivation activity and regulated the expression of several key transcription factors such as PU.1 and Pax5 in transgenic hematopoietic stem cells. These data suggested that EDAG was a key transcriptional regulator in maintaining the homeostasis of hematopoietic lineage commitment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.