To clarify responses of plant and soil carbon (C) and nitrogen (N) pools in grassland ecosystem to N addition, a field experiment was performed in a grassland in Keerqin Sandy Lands, Northeast China. We investigated vegetation composition and C and N pools of plant and soil (0-30 cm) after five consecutive years of N addition at a rate of 20 g N m -2 y -1 . Vegetation composition and species diversity responded dramatically to N addition, as dominance by C 4 perennials was replaced with C 3 annuals. Carbon in aboveground pool increased significantly (over two-fold), mainly due to the increase of the C in aboveground living plants and surface litter, which increased by 98 and 134%, respectively. Although soil C did not change significantly, the root C pool decreased in response to 5 years of N addition. The total ecosystem C pool was not significantly impacted by N addition because the large soil pool did not respond to N addition, and the increase in aboveground C was offset by the decrease in root C pool. Moreover, N addition significantly increased the aboveground N pool, but had no significant effects on belowground and total ecosystem N pools. Our results suggest that in the mid-term N addition alters the C and N partitioning in above-and belowground pools, but has no significant effects on total ecosystem C and N pools in these N-limited grasslands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.