In order to improve the operational reliability and service life of the main systems, components and assemblies (SCA) of railway transport (RT), it is necessary to timely detect (diagnose) their defects, including the use of the methods of intellectual analysis and data processing.One of the promising approaches to the synthesis of the SCA functional control system is the use of intelligent technology (INTECH) methods. This technology is based on maximizing the information capacity of an automated decision support system for detecting faults during its training.
Automation of data processing of contactless diagnostics (detection) of the technical condition of the majority of nodes and aggregates of railway transport (RWT) minimizes the damage from failures of these systems in operating modes. This becomes possible due to the rapid detection of serious defects at the stage of their origin. Basically, in practice, the control of the technical condition of the nodes and aggregates of the RWT is carried out during scheduled repairs. It is not always possible to identify incipient defects. Consequently, it is not always possible to warn personnel (machinists, repairmen, etc.) of significant damage to the RWT systems until their complete failure. The difficulties of obtaining diagnostic information is that there is interdependence between the main nodes of the RWT. This means that if physical damage occurs at any of the RWT nodes, in other nodes there can also occur malfunctions.As the main way to improve the efficiency of state detection of the nodes and aggregates of RWT, we see the direction of giving the adaptability property for an automated data processing system from various contactless diagnostic information removal systems. The global purpose can be achieved, in particular, through the use of machine learning methods and failure recognition (recognition objects). In order to improve the operational reliability and service life of the main nodes and aggregates of RWT, there are proposed an appropriate model and algorithm of machine learning of the operator control system of nodes and aggregates. It is proposed to use the Shannon normalized entropy measure and the Kullback-Leibler distance information criterion as a criterion of the learning effectiveness of the automated detection system and operator node state control of RWT. The article describes the application of the proposed method on the example of an automatic detection system (ADS) of the state of a traction motor of an electric locomotive. There are given the test data of the model and algorithm in the MATLAB environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.