The seven approximately Earth-sized transiting planets in the TRAPPIST-1 system provide a unique opportunity to explore habitable zone and non-habitable zone small planets within the same system. Its habitable zone exoplanets -due to their favorable transit depths -are also worlds for which atmospheric transmission spectroscopy is within reach with the Hubble Space Telescope (HST) and with the James Webb Space Telescope (JWST). We present here an independent reduction and analysis of two HST Wide Field Camera 3 (WFC3) near-infrared transit spectroscopy datasets for six planets (b through g). Utilizing our physically-motivated detector charge trap correction and a custom cosmic ray correction routine, we confirm the general shape of the transmission spectra presented by de Wit et al. (2016Wit et al. ( , 2018. Our data reduction approach leads to a 25% increase in the usable data and reduces the risk of confusing astrophysical brightness variations (e.g., flares) with instrumental systematics. No prominent absorption features are detected in any individual planet's transmission spectra; by contrast, the combined spectrum of the planets shows a suggestive decrease around 1.4 µm similar to an inverted water absorption feature. Including transit depths from K2, the SPECULOOS-South Observatory, and Spitzer, we find that the complete transmission spectrum is fully consistent with stellar contamination owing to the transit light source effect. These spectra demonstrate how stellar contamination can overwhelm planetary absorption features in low-resolution exoplanet transit spectra obtained by HST and JWST and also highlight the challenges in combining multi-epoch observations for planets around rapidly rotating spotted stars.
This study presents three-dimensional (3D) MoS2/reduced graphene oxide (rGO)/graphene quantum dots (GQDs) hybrids with improved gas sensing performance for NO2 sensors. GQDs were introduced to prevent the agglomeration of nanosheets during mixing of rGO and MoS2. The resultant MoS2/rGO/GQDs hybrids exhibit a well-defined 3D nanostructure, with a firm connection among components. The prepared MoS2/rGO/GQDs-based sensor exhibits a response of 23.2% toward 50 ppm NO2 at room temperature. Furthermore, when exposed to NO2 gas with a concentration as low as 5 ppm, the prepared sensor retains a response of 15.2%. Compared with the MoS2/rGO nanocomposites, the addition of GQDs improves the sensitivity to 21.1% and 23.2% when the sensor is exposed to 30 and 50 ppm NO2 gas, respectively. Additionally, the MoS2/rGO/GQDs-based sensor exhibits outstanding repeatability and gas selectivity. When exposed to certain typical interference gases, the MoS2/rGO/GQDs-based sensor has over 10 times higher sensitivity toward NO2 than the other gases. This study indicates that MoS2/rGO/GQDs hybrids are potential candidates for the development of NO2 sensors with excellent gas sensitivity.
Circumbinary Planets (CBPs) can be misaligned with their host binary stars. Orbital dynamics, simulations, and recent observations of proto-planetary disks all suggest that the planet can stably orbit in a plane perpendicular to that of an eccentric host binary star (i.e., a polar orbit). No solid claim of detection of such a configuration has been made; the nine systems detected by the transit technique are nearly coplanar, but their discovery is also biased towards that configuration. Here, we develop Eclipse Timing Variations (ETVs) as a method to detect misaligned CBPs. We find that since apsidal motion (periastron precession) of the host binary is prograde for a coplanar planet and retrograde for a polar planet, the mean eclipse period of primary and secondary eclipses differ in a way that distinguishes those configurations. Secondly, the Eclipse Duration Variations (EDVs) vary in a way that can confirm that inference, over and against a polar model. Thirdly, the relative phasing of primary and secondary ETVs on the planet's orbital timescale also distinguishes the two configurations, which we explain analytically and quantify through a grid of numerical models. We apply these methods to Kepler-34, a transiting planet known to be nearly coplanar by detailed photodynamic modeling. In this system, we find that the binary eclipse times alone suffice to distinguish these orbital configurations, using the effects introduced here. Our work provides a tool for discovering potential polar CBPs, or misaligned CBPs of milder inclinations, from the existing ETV dataset of the Kepler, as well as future observations by TESS or PLATO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.