Expansion of myeloid-derived suppressor cells (MDSCs) has been documented in some murine models and patients with autoimmune diseases, but the exact role of MDSCs in this process remains largely unknown. The current study investigates this question in patients with systemic lupus erythematosus (SLE). Patients with active SLE showed a significant increase in HLA-DR−CD11b+CD33+ MDSCs, including both CD14+CD66b− monocytic and CD14−CD66b+ granulocytic MDSCs, in the peripheral blood compared to healthy controls (HCs). The frequency of MDSCs was positively correlated with the levels of serum arginase-1 (Arg-1) activity, T helper 17 (TH17) responses, and disease severity in SLE patients. Consistently, in comparison with MDSCs from HCs, MDSCs from SLE patients exhibited significantly elevated Arg-1 production and increased potential to promote TH17 differentiation in vitro in an Arg-1–dependent manner. Moreover, in a humanized SLE model, MDSCs were essential for the induction of TH17 responses and the associated renal injuries, and the effect of MDSCs was Arg-1–dependent. Our data provide direct evidence demonstrating a pathogenic role for MDSCs in human SLE. This study also provides a molecular mechanism of the pathogenesis of SLE by demonstrating an Arg-1–dependent effect of MDSCs in the development of TH17 cell–associated autoimmunity, and suggests that targeting MDSCs or Arg-1 may offer potential therapeutic strategies for the treatment of SLE and other TH17 cell–mediated autoimmune diseases.
Polycystic ovary syndrome (PCOS) a long-known endocrinopathy and one of the most common endocrine-reproductivemetabolic disorders in women, which can lead to infertility. Although the precise etiology remains unclear, PCOS is considered as a complex genetic trait, with a high degree of heterogeneity. Besides, hormones and immune cells, including both innate and adaptive immune cells, are reportedly a cross talk in PCOS. Chronic low-grade inflammation increases autoimmune disease risk. This proinflammatory condition may, in turn, affect vital physiological processes that ultimately cause infertility, such as ovulation failure and embryo implantation. Here, we review the accumulating evidence linking PCOS with inflammatory status providing an overview of the underlying hormone-mediated dysregulation of immune cells. We mainly focus on the correlational evidence of associations between immune status in women and the increased prevalence of PCOS, along with the specific changes in immune responses. Further recognition and exploration of these interactions may help elucidate PCOS pathophysiology and highlight targets for its treatment and prevention.
Immune cells play important roles in systemic lupus erythematosus (SLE). We previously found that myeloid-derived suppressor cell (MDSC)-derived arginase-1 (Arg-1) promoted Th17 cell differentiation in SLE. In this study, we performed RNA-chip to identify the microRNA regulation network between MDSCs and Th17 cells. miR-542-5p in humans, as the homologous gene of miR-322-5p in mice was significantly upregulated in the Th17+MDSC group compared to Th17 cells cultured alone and downregulated in the Th17+MDSC+Arg-1 inhibitor group compared to the Th17+MDSC group. We further evaluated the miR-322-5p and Th17/Treg balance in mice and found that the proportions of both Th17 cells and Tregs were elevated and that miR-322-5p overexpression activated the transforming growth factor-β pathway. Moreover, although miR-322-5p expression was higher in SLE mice, it decreased after treatment with an Arg-1 inhibitor. The proportion of Th17 cells and Th17/Treg ratio correlated with miR-322-5p levels. In conclusion, MDSC-derived Arg-1 and mmu-miR-322-5p not only promote Th17 cell and Treg differentiation, but also shift the Th17/Treg ratio in SLE. The Arg-1/miR-322-5p axis may serve as a novel treatment target for SLE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.