In recent years, immune checkpoint inhibitor has achieved remarkable success in multiple cancer treatment. However, how to pre‐judge which patients are suitable for immune checkpoint inhibitor is a difficult problem. We use the existing public bioinformatics database to comprehensively analyze the relationship between clinical data of various cancers with immune checkpoint blocking molecules and long non‐coding RNAs (lncRNAs), and try to find the potential predictive value of lncRNA for immunotherapy with checkpoint inhibitors. In this study, we found that: (a) high expression of lncRNA MIR155 host gene (MIR155HG) was closely related to better overall survival (OS) in cholangiocarcinoma (CHOL), lung adenocarcinoma (LUAD), and skin cutaneous melanoma (SKCM), and have better disease‐free survival (DFS) in CHOL. Meanwhile, the high level of MIR155HG was associated with poorer OS in glioblastoma multiforme (GBM), kidney renal clear cell carcinoma (KIRC), brain lower grade glioma (LGG), and uveal melanoma (UVM). (b) The expression of MIR155HG was significantly correlated with infiltrating levels of immune cells and immune molecules, especially with immune checkpoint molecules such as programmed cell death protein 1 (PD‐1), PD‐1 ligand 1 (PD‐L1), and cytotoxic T lymphocyte‐associated antigen 4 (CTLA4) in most kinds of cancers. (c) Detection of clinical CHOL and liver hepatocellular carcinoma tissues confirmed that there was a strong positive correlation between MIR155HG expression and the levels of CTLA4 and PD‐L1. MIR155 host gene can be used as a prognostic marker in multiple cancers, and of great value in predicting the curative effect of immune checkpoint inhibitor therapy owing to it is closely related with immune cells infiltration and immune checkpoint molecules expression.
Background2,5-dimethylcelecoxib (DMC) is a targeted inhibitor of microsomal prostaglandin E synthase-1 (mPGES-1), a key enzyme in the PGE2 synthesis pathway of inflammatory mediators. Previous studies have confirmed that DMC can inhibit the growth of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). However, it is not known whether DMC is involved in the changes of tumor immune microenvironment.MethodsIn this study, we explored the effects of DMC on HBV-related HCC immune microenvironment, and deeply analyzed its unique effect and mechanism on programmed death receptor 1 (PD-1)/and its ligand 1 (PD-L1) pathway.ResultsClinical hepatoma tissues detection showed that compared with non-virus-related HCC, the level of CD8 of HBV-related HCC was significantly lower, while the levels of PD-L1 and CD163 were higher. In vivo experiments indicated that DMC could increase the level of tumor infiltrating CD8+ T cells in hepatitis B virus X (HBx) (+) hepatoma cells implanted mouse models, and inhibit the expression of PD-L1 and CD163 in tumor tissues. DMC combined with atezolizumab had more significant antitumor effect and stronger blocking effect on PD-1/PD-L1 pathway. Mechanism studies have shown that DMC can promote ubiquitin degradation of HBx-induced PD-L1 protein in HCC cells by activating adenosine 5′-monophosphate-activated protein kinase pathway. Further experiments confirmed that this process was mainly mediated by E3 ligase RBX1.ConclusionsOur results uncover a role for DMC in promoting HBV-related HCC immune microenvironment, which not only enrich the relationship between inflammatory factors (mPGES-1/PGE2 pathway) and immunosuppression (PD-L1), but also provide an important strategic reference for multitarget or combined immunotherapy of HBV-related HCC.
Carbamoyl phosphate synthase 1 (CPS1) is the rate‐limiting enzyme in the first step of the urea cycle and an indispensable enzyme in the metabolism of human liver. However, CPS1 epigenetic regulation involves promoter analysis and the role of liver‐enriched transcription factors (LETFs), which is not fully elucidated. In this work, the promoter region of hCPS1 gene was cloned, and its activity was investigated. An LETF, hepatocyte nuclear factor 3‐beta (HNF3β), was found to promote the transcriptional expression of CPS1 in liver‐derived cell lines. In addition, dual‐luciferase reporter assay shows that the essential binding sites of the HNF3β may exist in the oligonucleotide −70 nt to +73 nt. Two putative binding sites are available for HNF3β. Mutation analysis results show that the binding site 2 of HNF3β was effective, and the transcriptional activity of CPS1 promoter significantly decreased after mutation. Electrophoretic mobile shift assay (EMSA) and ChIP assay confirmed that HNF3β can interact with the binding site in the CPS1 promoter region of −70 nt to +73 nt promoter region in vivo and in vitro to regulate the transcription of CPS1. Moreover, HNF3β overexpression enhanced the transcription of CPS1 and consequently improved the mRNA and protein levels of CPS1, whereas the knockdown of HNF3β showed the opposite effects. Finally, urea production in cells was measured, and ammonia detoxification improved significantly in cells after transfection with HNF3β. HNF3β plays a vital role in regulation of CPS1 gene and could promote the metabolism of ammonia by regulating CPS1 expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.