The pandemic coronavirus SARS-CoV-2 in the world has caused a large infected population suffering from COVID-19. To curb the spreading of the virus, WHO urgently demanded an extension of screening and testing; thus, a rapid and simple diagnostic method is needed. We applied a reverse transcription-loop-mediated isothermal amplification (RT-LAMP) to achieve the detection of SARS-CoV-2 in 30 min. We designed four sets of LAMP primers (6 primers in each set), targeting the viral RNA of SARS-CoV-2 in the regions of orf1ab, S gene and N gene. A colorimetric change was used to report the results, which enables the outcome of viral RNA amplification to be read by the naked eye without the need of expensive or dedicated instrument. The sensitivity can be 80 copies of viral RNA per ml in a sample. We validated the RT-LAMP method in a hospital in China, employing 16 clinic samples with 8 positives and 8 negatives. The testing results are consistent with the conventional RT-qPCR. In addition, we also show that one-step process without RNA extraction is feasible to achieve RNA amplification directly from a sample. This rapid, simple and sensitive RT-LAMP method paves a way for a large screening at public domain and hospitals, particularly regional hospitals and medical centres in rural areas.
To further study the proliferation and multi-differentiation potentials of adipose-derived stem cells (ADSCs), the cells were isolated with improved methods and their growth curves were achieved with cck-8. Surface protein expression was analyzed by flow cytometry to characterize the cell phenotype. The multi-lineage potential of ADSCs was testified by differentiating cells with adipogenic, chondrogenic, osteogenic, and myogenic inducers. The results showed that about 5 Â 10 5 stem cells could be obtained from 400 to 600 mg adipose tissue. The ADSCs can be continuously cultured in vitro for up to 1 month without passage and they have several logarithmic growth phases during the culture period. Also, the flow cytometry analysis showed that ADSCs expressed high levels of stem cell-related antigens (CD13, CD29, CD44, CD105, and CD166), while did not express hematopoiesis-related antigens CD34 and CD45, and human leukocyte antigen HLA-DR was also negative. Moreover, stem cell-related transcription factors, Nanog, Oct-4, Sox-2, and Rex-1 were positively expressed in ADSCs. The expression of alkaline phosphatase (ALP) was detected in the early osteogenic induction and the calcified nodules were observed by von Kossa staining. Intracellular lipid droplets could be observed by Oil Red staining. Differentiated cardiomyocytes were observed by connexin43 fluorescent staining. In order to obtain more stem cells, we can subculture ADSCs every 14 days instead of the normal 5 days. ADSCs still keep strong proliferation ability, maintain their phenotypes, and have stronger multi-differentiation potential after 25 passages.
Objective. There is very little information on the gradients of oxygen concentration from the synovial surface to the subchondral bone in articular cartilage. Cartilage is usually regarded as hypoxic, even though cellular metabolism is inhibited at low oxygen concentrations. We therefore measured rates of cellular consumption of oxygen and used these rates to calculate oxygen tension profiles across articular cartilage.Methods. The rate of oxygen consumption by bovine articular chondrocytes was measured in vitro, either in intact cartilage slices or in isolated chondrocytes. The oxygen tension profile across articular cartilage was predicted by solving a 1-dimensional reactiondiffusion equation. The effect of synovial fluid oxygen concentration, cell density, cartilage thickness, and influx of oxygen from the subchondral bone on the oxygen profile in the tissue was examined.Results. Oxygen consumption rates were relatively independent of oxygen tension at high oxygen tensions (5-21%), where they were ϳ10 nmoles/10 6 cells/hour for both isolated chondrocytes and for cartilage slices. Below 5% oxygen, the rate fell in an oxygen tension-dependent manner. Analysis showed that the oxygen profile across cartilage fell steeply in all but the thinnest cartilage samples but only fell to ϳ1% for low oxygen tensions in synovial fluid, with no supply from the subchondral bone. Conclusion.The oxygen tension in normal cartilage is not likely to fall to 1% except under abnormal conditions. Oxygen tensions within cartilage are strongly affected by a number of factors, including oxygen concentrations in synovial fluid, cartilage thickness, cell density, and cellular oxygen consumption rates. Supply from the subchondral bone may be of particular importance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.