Data collected from distributed sources or sites commonly have different distributions or contaminated observations. Active learning procedures allow us to assess data when recruiting new data into model building. Thus, combining several active learning procedures together is a promising idea, even when the collected data set is contaminated. Here, we study how to conduct and integrate several adaptive sequential procedures at a time to produce a valid result via several machines or a parallel‐computing framework. To avoid distraction by complicated modelling processes, we use confidence set estimation for linear models to illustrate the proposed method and discuss the approach's statistical properties. We then evaluate its performance using both synthetic and real data. We have implemented our method using Python and made it available through Github at https://github.com/zhuojianc/dsep.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.