Abstract. Circular back-propagation neural network (CBP) put forward by Sandro Ridella and Stefano Rovetta, a generalized model of multi-layer perceptron (MLP), possesses strong capabilities of generalization and adaptation to unknown inputs. And they can flexibly construct vector quantization (VQ) and radial basis function (RBF) networks under the CBP framework. With the original structure of CBP remaining unchanged, in this Letter a more generalized network model ICBP (Improved Circular Back-Propagation Neural Network) was designed by adding an extensive node with quadratic form to the original CBP inputs and endowing fixed values to the weights between this node and all the hidden nodes. An interesting property of ICBP is that although it has less adaptable weights, it is better in generalization and adaptability than CBP. Moreover, in order to partially solve the problem of local minima, we adopt the method of adding controlled noise to desired outputs. Finally, it has been proved by experiments that ICBP is better than CBP in the capabilities of forecasting and function approximation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.