Abstract:To meet the requirements of micro-grid real-time simulation, a novel real-time simulator for micro-grids based on Field-Programmable Gate Array (FPGA) and orders (FO-RTDS) is designed. We describe the design idea of the real-time solver and the order generator. Multi-valued parameter prestorage and multi-rate simulation are introduced to reduce the computational pressure. The data scheduling is carried out following the principle of saving the resources and the minimizing the average distance between variables. An example is performed on XC7VX690T-2FFG1761 chip, which proves the novel FO-RTDS method greatly improves the scale of real-time simulation of micro-grids.
Considering the rational use of field programmable gate array (FPGA) resources, this paper proposes a new FPGA-based real-time digital solver (FRTDS) for power system simulation. Based on the relationship between the number of computing components, the operating frequency, and the pipeline length, the best selection principle is given. By analyzing the implementation method of the Multi-Port Read/Write Circuit, the computing formula of the Look-Up-Table (LUT) consumption was derived. Given the excessive use of LUTs in the original computing components, the computing components were assembled in a single typical arithmetic expression of the power system simulation program, as the basic computing formula was characterized by a subset of the typical computing formula and multiple uses of the same variable. Data communication between different computing components was realized by using Multi-Port Input Circuits that share some outputs of read controller, and Multi-Port Output Circuits, which share some outputs of computing cores. According to the test results of original FRTDS and new FRTDS, it was found that the solution proposed in this paper had a shorter ideal simulation time and a higher parallel computing capability, which was very suitable for real-time digital simulation of power systems.
To make the object of electromagnetic transient (EMT) simulation flexible to change, the authors propose using the method of electromagnetic transient-transient stability analysis (TSA) hybrid real-time simulation of the variable area of interest. The area where the fault is to be set, or where the operation takes place, is defined as the area of interest. The simulation object is divided into multiple sub-networks. The EMT simulation range is determined according to the voltage drop depth at the boundary of the adjacent sub-network caused by the three-phase short-circuit fault at the boundary of an area of interest. The Norton equivalent is obtained by using the sub-network as a basic unit. The electromagnetic sub-network forms its own Norton equivalent on the TSA side by means of the Norton equivalent admittance of its TSA model. Based on this, the overall framework of hybrid real-time simulation of the variable area of interest is constructed. The fundamental phasor prediction and Norton equivalent current source prediction are adopted to reduce the interface error. The performance of the proposed method in terms of feasibility, flexibility, and effectiveness have been verified by the simulation studies on the IEEE 118-bus system.
In order to avoid some phenomena such as too many regulating times of on load tap changer, too frequent actions of capacitor switching, lower bus voltage qualification rate and higher network loss, it is presented that a control strategy for optimization of voltage and reactive power in substation based on load forecasting in this paper. The load and system voltage forecasting are realized by using radical basis function neural network. With the times of equipments' actions and the voltage quality as constraint conditions, the optimization objective function of the minimum system loss is established. The initial subsection load is based on apparent power fully compensated by the existing compensation capacitors. According to the subsection principle that voltage quality should be as high as possible, the tap position of transformer is determined. According to the initial optimization results, the reactive power is used as subsection load by the principle of as much as possible compensation. The best amount of groups of compensation capacitor is determined in the secondary subsection optimization. The application of 35kV distribution system in Yucheng County of Henan Province is analyzed in this paper. The voltage quality, the equipments' actions number limit, the maximum reducing system network loss can be achieved.
A field-programmable gate array (FPGA)-based digital solver for real-time electromechanical transient simulation is designed in this paper. The solving process for a device or sub-network in an electromechanical transient simulation is packaged into the orders in soft function solvers. The orders are reused by soft function solvers that are invoked by microprocessor cores. The data exchange between the microprocessor cores and soft function solvers is enhanced through explicit and implicit channels. The orders of the microprocessor cores are stored in the synchronous dynamic random access memory on the FPGA board, which solves the problem of insufficient storage space for the orders in electromechanical transient simulation. A real-time digital solver for electromechanical transient simulation, whose feasibility is verified by a simulation of part of the power system in East China, is successfully constructed by applying a small number of microprocessor cores and multiple soft function solvers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.