Recent research on Alzheimer's disease (AD) has shown that cognitive and memory decline in this disease is accompanied by disrupted changes in the coordination of large-scale brain functional networks. However, alterations in coordinated patterns of structural brain networks in AD are still poorly understood. Here, we used cortical thickness measurement from magnetic resonance imaging to investigate large-scale structural brain networks in 92 AD patients and 97 normal controls. Brain networks were constructed by thresholding cortical thickness correlation matrices of 54 regions and analyzed using graph theoretical approaches. Compared with controls, AD patients showed decreased cortical thickness intercorrelations between the bilateral parietal regions and increased intercorrelations in several selective regions involving the lateral temporal and parietal cortex as well as the cingulate and medial frontal cortex regions. Specially, AD patients showed abnormal small-world architecture in the structural cortical networks (increased clustering and shortest paths linking individual regions), implying a less optimal topological organization in AD. Moreover, AD patients were associated with reduced nodal centrality predominantly in the temporal and parietal heteromodal association cortex regions and increased nodal centrality in the occipital cortex regions. Finally, the brain networks of AD were about equally as robust to random failures as those of controls, but more vulnerable against targeted attacks, presumably because of the effects of pathological topological organization. Our findings suggest that the coordinated patterns of cortical morphology are widely altered in AD patients, thus providing structural evidence for disrupted integrity in large-scale brain networks that underlie cognition. This work has implications for our understanding of how functional deficits in patients are associated with their underlying structural (morphological) basis.
Temporal lobe epilepsy (TLE) is the most common drug-resistant epilepsy in adults. As morphometric studies have shown widespread structural damage in TLE, this condition is often referred to as a system disorder with disrupted structural networks. Studies based on univariate statistical comparisons can only indirectly test such hypothesis. Graph theory provides a new approach to formally analyze large-scale networks. Using graph-theoretical analysis of magnetic resonance imaging-based cortical thickness correlations, we investigated the structural basis of the organization of such networks in 122 TLE patients and 47 age- and sex-matched healthy controls. Networks in patients and controls were characterized by a short path length between anatomical regions and a high degree of clustering, suggestive of a small-world topology. However, compared with controls, patients showed increased path length and clustering, altered distribution of network hubs, and higher vulnerability to targeted attacks, suggesting a reorganization of cortical thickness correlation networks. Longitudinal analysis demonstrated that network alterations intensify over time. Bootstrap simulations showed high reproducibility of network parameters across random subsamplings, indicating that altered network topology in TLE is a consistent finding. Increased network disruption was associated with unfavorable postoperative seizure outcome, implying adverse effects of epileptogenesis on large-scale network organization.
Recent studies have demonstrated small-world properties in both functional and structural brain networks that are constructed based on different parcellation approaches. However, one fundamental but vital issue of the impact of different brain parcellation schemes on the network topological architecture remains unclear. Here, we used resting-state functional MRI (fMRI) to investigate the influences of different brain parcellation atlases on the topological organization of brain functional networks. Whole-brain fMRI data were divided into ninety and seventy regions of interest according to two predefined anatomical atlases, respectively. Brain functional networks were constructed by thresholding the correlation matrices among the parcellated regions and further analyzed using graph theoretical approaches. Both atlas-based brain functional networks were found to show robust small-world properties and truncated power-law connectivity degree distributions, which are consistent with previous brain functional and structural networks studies. However, more importantly, we found that there were significant differences in multiple topological parameters (e.g., small-worldness and degree distribution) between the two groups of brain functional networks derived from the two atlases. This study provides quantitative evidence on how the topological organization of brain networks is affected by the different parcellation strategies applied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.