In recent years, a variety of methods have been developed for indoor localization utilizing fingerprints of received signal strength (RSS) that are location dependent. Nevertheless, the RSS is sensitive to environmental variations, in that the resulting fluctuation severely degrades the localization accuracy. Furthermore, the fingerprints survey course is time-consuming and labor-intensive. Therefore, the lightweight fingerprint-based indoor positioning approach is preferred for practical applications. In this paper, a novel multiple-bandwidth generalized regression neural network (GRNN) with the outlier filter indoor positioning approach (GROF) is proposed. The GROF method is based on the GRNN, for which we adopt a new kind of multiple-bandwidth kernel architecture to achieve a more flexible regression performance than that of the traditional GRNN. In addition, an outlier filtering scheme adopting the k-nearest neighbor (KNN) method is embedded into the localization module so as to improve the localization robustness against environmental changes. We discuss the multiple-bandwidth spread value training process and the outlier filtering algorithm, and demonstrate the feasibility and performance of GROF through experiment data, using a Universal Software Radio Peripheral (USRP) platform. The experimental results indicate that the GROF method outperforms the positioning methods, based on the standard GRNN, KNN, or backpropagation neural network (BPNN), both in localization accuracy and robustness, without the extra training sample requirement.
In this paper, we propose a novel indoor passive localization approach called eigenspace-based DOA with direct-path recognition (ES-DPR), based on a DOA estimation algorithm with multiple omnidirectional antennas deployed in a uniform linear array (ULA). To address the multipath propagation interference problem in the indoor environments, we utilize the azimuth and RSS estimation results, which are calculated by using the eigenspace-based DOA (ES-DOA) algorithm, in a novel style. A direct-path bearing recognition algorithm is introduced to identify the real DOA of the signal source in different indoor environments, by combining the azimuth and RSS estimation with ensemble learning methods. Numerical simulations are conducted to verify the validity and superiority of the proposed method. The results show that the proposed ES-DPR method can achieve high resolution and has strong anti-noise capability in dealing with the multipath signals, and the direct-path recognition algorithm is reliable and robust in different indoor environments, even in undetectable direct-path conditions.
In this article, a difference-coarray-based direction of arrival (DOA) method is introduced, which utilizes the uniform linear array (ULA) in a novel fashion to address the problem of DOA estimation for coherent signals. Inspired by the coarray-based estimators employed in cases of sparse arrays, we convert the sample covariance matrix of the observed signals into the difference coarray domain and process the signals using a spatial smoothing technique. The proposed method exhibits good accuracy and robustness in both the uncorrelated and coherent cases. Numerical simulations verify that the ULA difference coarray- (UDC-) based method can achieve good DOA estimation accuracy even when the SNR is very low. In addition, the UDC-based method is insensitive to the number of snapshots. Under extremely challenging conditions, the proposed UDC-ES-DOA method is preferred because of its outstanding robustness, while the UDC-MUSIC method is suitable for most moderate cases of lower complexity. Due to its demonstrated advantages, the proposed method is a promising and competitive solution for practical DOA estimation, especially for low-SNR or snapshot-limited applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.