Comparative analysis of transposable elements (TEs) from different species can make it possible to reconstruct their history over evolutionary time. In this study, we identified a novel hAT element in Bombyx mori and Rhodnius prolixus with characteristic GGGCGGCA repeats in its subterminal region. Meanwhile, phylogenetic analysis demonstrated that the elements in these two species might represent a separate cluster of the hAT superfamily. Strikingly, a previously identified miniature inverted repeat transposable element (MITE) shared high identity with this autonomous element across the entire length, supporting the hypothesis that MITEs are derived from the internal deletion of DNA transposons. Interestingly, identity of the consensus sequences of this novel hAT element between B. mori and R. prolixus, which diverged about 370 million years ago, was as high as 96.5% over their full length (about 3.6 kb) at the nucleotide level. The patchy distribution amongst species, coupled with overall lack of intense purifying selection acting on this element, suggest that this novel hAT element might have experienced horizontal transfer between the ancestors of B. mori and R. prolixus. Our results highlight that this novel hAT element could be used as a potential tool for germline transformation of R. prolixus to control the transmission of Trypanosoma cruzi, which causes Chagas disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.