Iron is the most widely used metal in the world. However, hydrogen embrittlement in steels—iron based alloys—is an important issue related to the safety of our infrastructure, such as railroads and bridges. Therefore, the prevention of hydrogen embrittlement in steels is necessary. In the present study, we demonstrate two novel methods for the prevention of hydrogen embrittlement in iron: one involves the low-energy implantation of helium, which is usually an element harmful to metals, into iron, the other is inducing damage to the iron surface by ion irradiation. In general, irradiation with high-energy particles leads to metal brittleness. In the former method, the driving force for hydrogen embrittlement in iron is weakened, in the latter method, hydrogen diffusion in iron is prevented because of trapping of hydrogen atoms in the vacancies produced by the irradiation. As a result, hydrogen embrittlement in iron was suppressed by both methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.