Strontium zirconate (SrZrO3) has been considered as a promising thermal barrier coating (TBC) material for application in gas turbine engines; however, the phase transition problem limits its application. In this study, an Yb2O3 and Gd2O3 codoped SrZrO3 system with excellent properties was reported. Yb2O3‐Gd2O3 codoped SrZrO3 ceramic powders [Sr0.8(Zr0.9Yb0.05Gd0.05)O2.75, SZYG/YGZO], [Sr(Zr0.9Yb0.05Gd0.05)O2.95, SZYG] and pure SrZrO3 (SZO) powders were produced by a conventional solid‐state reaction method. The XRD and Raman results show that, the composite SZYG/YGZO ceramics consist of the SZO and Yb0.5Zr0.5O1.75 phases with a low thermal conductivity of ~1.3 W/(m·K) at 1000°C, which is at least 40% lower than that of the SZO ceramics. The TG‐DSC results show that the SZYG/YGZO ceramics have no phase transition in the temperature range of 600 to 1400°C. The thermal expansion coefficient of the SZYG/YGZO ceramics reaches 10.9 × 10−6 K−1 (1250°C). In addition, the fracture toughness of the SZYG/YGZO ceramics increases by more than 30% compared with the SZO ceramics, and this can be attributed to the presence of the Yb0.5Zr0.5O1.75 phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.