Based on typical water-rich sandy gravel strata in Beijing, in order to explore the application of the artificial ground freezing method (AGF) in urban large-scale underground engineering, the formation and development of freezing body were analyzed when multirow freezing pipes were working together, and the group effect exhibited during the freezing process was also revealed in this paper. On this basis, the basin-shaped freezing method (BFM) is put forward as an application of AGF used in underground engineering. BFM structure consists of two parts: the frozen curtain (basin wall) around the excavation scope and the horizontal frozen body (basin bottom) at the bottom of the station. Physical model test and numerical simulation were conducted to study temperature field expansion of BFM under two different conditions. The results show the following: (1) The group effect refers to the cooling effect of different freezing pipes influencing each other during freezing process. Under the condition of still water, the group effect expands the freezing area, and it shows the gradual development of freezing from back water surface to front water surface under seepage condition. (2) BFM can effectively play the role of water proofing, and although different parts of basin structure show different frozen order under different conditions, both basin wall and basin bottom can form an effective thickness during the freezing process.
The shallow tunnelling method (STM) often uses temporary supports to divide large section tunnels into several closed or semiclosed sections so as to share the upper load. The complex support system composed of primary and temporary supports can ensure safety during tunnel construction. Based on the large section tunnel of Beijing Subway Line 12, the mechanical characteristics of support system by the double-side-drift method (DSDM) during excavation and demolition were analyzed through numerical simulation and monitoring. The study showed that the middle cave excavation was the most critical stage of the DSDM, during which the load on the supporting structure increased significantly. The temporary vertical support bore most of the new load during middle cave excavation. During the demolition stage, the load was redistributed, which caused arch settlement and section convergence. The removal of the temporary vertical support exerted the greatest impact in this process. The lateral temporary inverted arch changed from axial compression to axial tension after the middle and lower caves were excavated. Based on the mechanical characteristics of the support system, some engineering suggestions were proposed for large section tunnel construction. These research results can provide reference for the design and construction of similar large section tunnels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.