A di-walled molecular umbrella (1a) has been synthesized by acylation of the terminal amino groups of spermidine with cholic acid, followed by condensation with bis(3-O-[N-1,2,3-benzotriazin-4(3H)-one]yl)-5,5'-dithiobis-2-nitrobenzoate (BDTNB), and displacement with glutathione (gamma-Glu-Cys-Gly, GSH). Replacement of the sterol hydroxyls with sulfate groups, prior to displacement with GSH, afforded a hexasulfate analogue 1b. Both conjugates have been found to enter large unilamellar vesicles (200 nm diameter, extrusion) of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and to react with entrapped GSH to form oxidized glutathione (GSSG). Evidence for vesicular entry has come from the formation of oxidized glutathione (GSSG) within the interior of the vesicle, the appearance of the thiol form of the umbrella (USH), and the absence of release of GSH into the external aqueous phase. Results that have been obtained from monolayer experiments, together with the fact that the heavily sulfated conjugate is able to cross the phospholipid bilayer, have yielded strong inferential evidence for an "umbrella-like" action of these molecules as they cross the lipid bilayer.
A series of ion conductors have been synthesized in which the degree of facial hydrophilicity has been systematically varied. Specifically, conjugates have been prepared from cholic acid and spermine in which the hydrophilic face of each sterol bears methoxy (1), hydroxy (2), carbamate (3), or sulfate groups (4). The ability of these conjugates to promote the transport of Na(+) across phosphatidylcholine membranes of varying thickness has been investigated by (23)Na NMR spectroscopy. Examination of observed activities in three different phosphatidylcholine membranes has provided evidence for membrane-spanning dimers as the transport-active species. In the thinnest membranes investigated, made from 1,2-dimyristoleoyl-sn-glycero-3-phosphocholine (C14), Na(+)-transport activity was found to increase, substantially, with increasing facial hydrophilicity. In thicker membranes, made from 1,2-dioleoyl-sn-glycero-3-phosphocholine (C18), observed activities were found to decrease with increasing facial hydrophilicity; with a membrane of intermediate thickness, prepared from 1,2-dipalmitoleoyl-sn-glycero-3-phosphocholine (C16), ion-conducting activity increased and then decreased, with continuous increases in facial hydrophilicity. The possible origins for these variations in activity are briefly discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.