Accurate estimation of the biomass of roadside grasses plays a significant role in applications such as fire-prone region identification. Current solutions heavily depend on field surveys, remote sensing measurements and image processing using reference markers, which often demand big investments of time, effort and cost. This paper proposes Density Weighted Connectivity of Grass Pixels (DWCGP) to automatically estimate grass biomass from roadside image data. The DWCGP calculates the length of continuously connected grass pixels along a vertical orientation in each image column, and then weights the length by the grass density in a surrounding region of the column. Grass pixels are classified using feedforward artificial neural networks and the dominant texture orientation at every pixel is computed using multiorientation Gabor wavelet filter vote. Evaluations on a field survey dataset show that the DWCGP reduces Root-Mean-Square Error from 5.84 to 5.52 by additionally considering grass density on top of grass height. The DWCGP shows robustness to non-vertical grass stems and to changes of both Gabor filter parameters and surrounding region widths. It also has performance close to human observation and higher than eight baseline approaches, as well as promising results for classifying low vs. high fire risk and identifying fire-prone road regions.
Viewer interest, evoked by video content, can potentially identify the highlights of the video. This paper explores the use of facial expressions (FE) and heart rate (HR) of viewers captured using camera and non-strapped sensor for identifying interesting video segments. The data from ten subjects with three videos showed that these signals are viewer dependent and not synchronized with the video contents. To address this issue, new algorithms are proposed to effectively combine FE and HR signals for identifying the time when viewer interest is potentially high. The results show that, compared with subjective annotation and match report highlights, 'non-neutral' FE and 'relatively higher and faster' HR is able to capture 60%-80% of goal, foul, and shot-ongoal soccer video events. FE is found to be more indicative than HR of viewer interest, but the fusion of these two modalities outperforms each of them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.