Neurotrophic factors such as brain-derived neurotrophic factor (BDNF) are assumed to provide trophic support via a target-derived, retrograde mechanism of action. However, recent studies suggest that neurotrophic factors can act in an autocrine fashion and perhaps even in an anterograde direction similar to neurotransmitters. To further explore this hypothesis, we compared the neuroanatomical pattern of BDNF mRNA and protein in response to electroconvulsive seizures (ECS) or kainic acid-induced seizure activity. Using in situ hybridization, we found that chronic ECS induced BDNF mRNA predominantly in the granule neurons of the dentate gyrus. However, immunohistochemistry with an anti-BDNF antibody revealed that ECS increased endogenous BDNF protein in the mossy fibers, which are composed of axons projecting from the granule neurons of the dentate gyrus to the CA3 pyramidal layer of the hippocampus. Kainic acid administration (10 mg/kg, i.p., once) was used to lesion CA3 neurons selectively, as these are a possible retrograde source of BDNF protein in mossy fibers. Three weeks later, a prolonged elevation of BDNF mRNA in granule neurons, but not elsewhere in hippocampus, was accompanied by an increase in BDNF protein in the mossy fibers. These results suggest that BDNF was transcribed and translated in granule neuron cell bodies but transported in an anterograde direction to provide trophic support of CA3 pyramidal neurons.
The aim of the present study was to determine the effects of occupational and environmental exposure on respiratory symptoms in adults in rural Beijing, China.Thirty randomly selected villages in the counties of Shunyi and Tongxian, 50 km north and east, respectively, of the city of Beijing, China, participated in this study. Village doctors interviewed all residents aged ≥15 yrs and completed the International Union Against Tuberculosis and Lung Disease Questionnaire on Bronchial Symptoms translated into Chinese with added questions on smoking and occupational and environmental exposure.Of the eligible population, 22,528 adults (98%) took part. The prevalence of all respiratory symptoms,i.e.asthma-like symptoms, asthma attacks in the last 12 months, chronic cough and chronic phlegm, was low. Significant determinants for respiratory symptoms were age, sex, smoking and county of residence. A dose-dependent relationship was found between cumulative cigarette consumption and prevalence of respiratory symptoms. After adjusting for these variables, exposure to insecticides and fertilisers significantly increased the risk of most of the respiratory symptoms, whereas exposure to indoor air pollution from domestic fuels did not.Exposure to chemicals such as insecticides and fertilisers contributed independently to the risk of respiratory symptoms in rural Beijing, China.
The aim of this study was to investigate the protective effects of acetylbritannilactone (ABL) on renal injury induced by acute exhaustive exercise in the rat. The exhaustive exercise induced kidney injury in rats was established by exhaustive swimming (ES). ABL (26 mg/kg) or polyglycol (control) were administrated orally by gastric gavage 24 h before training. Renal function, biochemical index, renal histopathological change, oxidative stress indices, renal cell apoptosis and inflammatory molecules were checked after ES, for 6 h and 24 h. It was found that immediately after exhaustive swimming, the serum urea and creatinine were significantly higher in ES rats, and the same for serum creatine kinase. All the values were reduced in the ES rats treated with ABL. The increase of superoxide dismutase activity and decrease of malondialdehyde content in the kidney were found in rats with ABL treatment. Tubular cell apoptosis at different time points after ES were significantly reduced by the ABL treatment. The increased expression of TNF-α and NF-κB induced by ES was also significantly decreased by ABL treatment. Our results suggest that ABL protects rats from overtraining-induced kidney injury by inhibiting renal cell apoptosis and suppressing oxidative-stress generation and inhibiting inflammation.
In our study, we aimed to reveal potential long non-coding RNAs (lncRNA) biomarkers in lung adenocarcinoma (LAD) using lncRNA-mediated competing endogenous RNAs (ceRNAs) network (LMCN). Competing lncRNA-mRNA interactions were identified using the hypergeometric test. Co-expression analysis for the competing lncRNA-mRNA interactions was implemented, and relying on the weight value >0.8, a highly competitive LMCN was further constructed. Degree distribution, betweenness and closeness for LMCN were carried out to analyze the network structure. Functional analyses of mRNAs in LMCN were carried out to further explore the biological functions of lncRNAs. Biclique algorithm was utilized to extract competing modules from the LMCN. Finally, we verified our findings in an independent sample set using qRT-PCR. Based on degrees >60, we identified 4 hubs, including DLEU2, SNHG12, HCP5, and LINC00472. Furthermore, 2 competing modules were identified, and LINC00472 in module 1 functioned as a hub in both LMCN and module. Functional implications of lncRNAs demonstrated that lncRNAs were related to histone modification, negative regulation of cell cycle, neuroactive ligand-receptor interaction, and regulation of actin cytoskeleton. qRT-PCR results demonstrated that lncRNAs LINC00472, and HCP5 were down-regulated in LAD tissues, while the expression level of SNHG12 was up-regulated in LAD tissues. Our study sheds novel light on the roles of lncRNA-related ceRNA network in LAD and facilitates the detection of potential lncRNA biomarkers for LAD diagnosis and treatment. Remarkably, in our study, LINC00472, HCP5, and SNHG12 might be potential biomarkers for LAD management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.