Since the BP neural network has poor performance and unstable learning rate in the maximum power point tracking (MPPT) algorithm of photovoltaic (PV) system, an adaptive particle swarm optimization BP neural network-fuzzy control PV MPPT algorithm (APSO-BP-FLC) is proposed in this paper. First, the inertia weight, learning factor and acceleration factor of particle swarm optimization (PSO) are self-updating, and the mutation operator is adopted to initialize the position of each particle. Second, the APSO algorithm is used to update the optimal weight threshold of BP neural network, where the input layer is irradiation and temperature, and the output layer is the maximum power point (MPP) voltage. Third, the fuzzy logical control (FLC) is employed to adjust the duty cycle of Boost converter. The inputs of FLC is voltage difference and duty ratio D(n-1) at the previous time, and the output is duty ratio D(n). Moreover, D(n-1) is optimized by |dP/dU| to improve the search range of FLC. The irradiation, temperature and MPP voltage of PV cell are adopted as the datasets for simulation in a city in Shaanxi province, China. Simulation results show that the proposed MPPT algorithm is superior to the APSO-BP, FLC and perturbation and observation (P&O) algorithm with tracking performance, steady state oscillation rate and efficiency. In addition, the efficiency of proposed MPPT algorithm is improved by 0.37%, 6.2%, and 6.8% as compared to APSO-BP, FLC and P&O algorithm.
Aiming at the problems of high complexity and low detection accuracy of single-stage three-dimensional (3D) detection method, a vehicle object detection algorithm based on the Efficient Channel Attention (ECA) mechanism is proposed. This paper provides a good solution to the problems of low object recognition accuracy and high model complexity in the field of 3D object detection. First, we voxelized the original point cloud data, taking the average coordinates and intensity values as the initial features. By entering into the Voxel Feature Encoding (VFE) layer, we can extract the features of each voxel. Then, referring to the VoxelNet model, the ECA mechanism is introduced, which reduces the complexity of the model while maintaining the good performance in the model. Finally, experiments on the widely used KITTI dataset show that the algorithm performs well, and the accuracy of the proposed ECA algorithm has reached 87.75%. Compared with the current mainstream algorithm SE-SSD of object detection, the accuracy is increased by 0.21%.
Channel estimation is a key part of communication systems. However, the channel of millimeter-Wave (mmWave) Massive Multiple-Input Multiple-Output (Massive-MIMO) system has sparse characteristics, and the conventional channel estimation method is prone to noise factors and tends to achieve low estimation accuracy. Therefore, in this paper a channel estimation method is proposed for mmWave Massive MIMO systems based on deep learning. Firstly, a dataset to simulate a real-world environment, is generated by setting specific parameters. Furthermore, the generated channel matrix is adopted as the input of the neural network. Secondly, the attention mechanism is integrated into the deep learning method with ResUNet to enhance the ability of feature extraction. Finally, the channel estimation matrix is obtained via the aforementioned network model. The experimental results indicate that the Massive-MIMO method is superior to the conventional channel estimation methods in channel estimation accuracy and convergence rate, and has a good application prospects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.