In this paper, two optimisation models are established to determine the criterion weights in multi-criteria decision-making situations where knowledge regarding the weight information is incomplete and the criterion values are interval neutrosophic numbers. The proposed approach combines interval neutrosophic sets and TOPSIS, and the closeness coefficients are expressed as interval numbers. Furthermore, the relative likelihood-based comparison relations are constructed to determine the ranking of alternatives. A fuzzy cross-entropy approach is proposed to calculate the discrimination measure between alternatives and the absolute ideal solutions, after a transformation operator has been developed to convert interval neutrosophic numbers into simplified neutrosophic numbers. Finally, an illustrative example is provided, and a comparative analysis is conducted between the approach developed in this paper and other existing methods, to verify the feasibility and effectiveness of the proposed approach.
The main purpose of this paper is to provide a method of multi-criteria decision-making that combines simplified neutrosophic linguistic sets and normalized Bonferroni mean operator to address the situations where the criterion values take the form of simplified neutrosophic linguistic numbers and the criterion weights are known. Firstly, the new operations and comparison method for simplified neutrosophic linguistic numbers are defined and some linguistic scale functions are employed. Subsequently, a Bonferroni mean operator and a normalized weighted Bonferroni mean operator of simplified neutrosophic linguistic numbers are developed, in which some desirable characteristics and special cases with respect to the parameters p and q in Bonferroni mean operator are studied. Then, based on the simplified neutrosophic linguistic normalized weighted Bonferroni mean operator, a multi-criteria decision-making approach is proposed. Finally, an illustrative example is given and a comparison analysis is conducted between the proposed approach and other existing method to demonstrate the effectiveness and feasibility of the developed approach.
For many companies, green product development has become a key strategic consideration due to regulatory requirements and market trends. In this paper, the life cycle assessment technique is used to develop an innovative multi-criteria group decision-making approach that incorporates power aggregation operators and a TOPSIS-based QUALIFLEX method in order to solve green product design selection problems using neutrosophic linguistic information. Differences in semantics as well as the risk preferences of decision-makers are considered in the proposed method. The practicality and effectiveness of the proposed approach are then demonstrated through an illustrative example, in which the proposed method is used to select the optimum green product design, followed by sensitivity and comparative analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.