Contrastive Language-Image Pre-training (CLIP) has been shown to learn visual representations with promising zero-shot performance. To further improve its downstream accuracy, existing works propose additional learnable modules upon CLIP and fine-tune them by few-shot training sets. However, the resulting extra training cost and data requirement severely hinder the efficiency for model deployment and knowledge transfer. In this paper, we introduce a free-lunch enhancement method, CALIP, to boost CLIP's zero-shot performance via a parameter-free attention module. Specifically, we guide visual and textual representations to interact with each other and explore cross-modal informative features via attention. As the pre-training has largely reduced the embedding distances between two modalities, we discard all learnable parameters in the attention and bidirectionally update the multi-modal features, enabling the whole process to be parameter-free and training-free. In this way, the images are blended with textual-aware signals and the text representations become visual-guided for better adaptive zero-shot alignment. We evaluate CALIP on various benchmarks of 14 datasets for both 2D image and 3D point cloud few-shot classification, showing consistent zero-shot performance improvement over CLIP. Based on that, we further insert a small number of linear layers in CALIP's attention module and verify our robustness under the few-shot settings, which also achieves leading performance compared to existing methods. Those extensive experiments demonstrate the superiority of our approach for efficient enhancement of CLIP. Code is available at https://github.com/ZiyuGuo99/CALIP.
Contrastive Language-Image Pre-training (CLIP) has been shown to learn visual representations with great transferability, which achieves promising accuracy for zero-shot classification. To further improve its downstream performance, existing works propose additional learnable modules upon CLIP and fine-tune them by few-shot training sets. However, the resulting extra training cost and data requirement severely hinder the efficiency for model deployment and knowledge transfer. In this paper, we introduce a free-lunch enhancement method, CALIP, to boost CLIP's zero-shot performance via a parameter-free Attention module. Specifically, we guide visual and textual representations to interact with each other and explore cross-modal informative features via attention. As the pre-training has largely reduced the embedding distances between two modalities, we discard all learnable parameters in the attention and bidirectionally update the multimodal features, enabling the whole process to be parameterfree and training-free. In this way, the images are blended with textual-aware signals and the text representations become visual-guided for better adaptive zero-shot alignment. We evaluate CALIP on various benchmarks of 14 datasets for both 2D image and 3D point cloud few-shot classification, showing consistent zero-shot performance improvement over CLIP. Based on that, we further insert a small number of linear layers in CALIP's attention module and verify our robustness under the few-shot settings, which also achieves leading performance compared to existing methods. Those extensive experiments demonstrate the superiority of our approach for efficient enhancement of CLIP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.