Heritable symbionts play an essential role in many aspects of host ecology in a temperature-dependent manner. However, how temperature impacts the host and their interaction with endosymbionts remains largely unknown. Here, we investigated the impact of moderate (20°C) and high (30 and 35°C) temperatures on symbioses between the spider mite Tetranychus truncatus and two maternally inherited endosymbionts (Wolbachia and Spiroplasma). We found that the thermal tolerance of mites (as measured by survival after heat exposure) was lower for mites that were singly infected with either Wolbachia or Spiroplasma than it was for co-infected or uninfected mites. Although a relatively high temperature (30°C) is thought to promote bacterial replication, rearing at high temperature (35°C) resulted in losses of Wolbachia and particularly Spiroplasma. Exposing the mites to 20°C reduced the density and transmission of Spiroplasma but not Wolbachia. The four spider mite strains tested differed in the numbers of heat shock genes (Hsps) induced under moderate or high temperature exposure. In thermal preference (Tp) assays, the two Wolbachia-infected spider mite strains preferred a lower temperature than strains without Wolbachia. Our results show that endosymbiont-mediated spider mite responses to temperature stress are complex, involving a combination of changing endosymbiont infection patterns, altered thermoregulatory behavior, and transcription responses.
Most arthropod-associated bacterial communities play a crucial role in host functional traits, whose structure could be dominated by endosymbionts. The spider mite Tetranychus truncatus is a notorious agricultural pest harboring various endosymbionts, yet the effects of endosymbionts on spider mite microbiota remain largely unknown. Here, using deep sequencing of the 16S rRNA gene, we characterized the microbiota of male and female T. truncatus with different endosymbionts (Wolbachia and Spiroplasma) across different developmental stages. Although the spider mite microbiota composition varied across the different developmental stages, Proteobacteria were the most dominant bacteria harbored in all samples. Positive relationships among related operational taxonomic units dominated the significant coassociation networks among bacteria. Moreover, the spider mites coinfected with Wolbachia and Spiroplasma had a significantly higher daily fecundity and juvenile survival rate than the singly infected or uninfected spider mites. The possible function of spider-mite associated bacteria was discussed. Our results highlight the dynamics of spider mite microbiotas across different life stages, and the potential role of endosymbionts in shaping the microbiota of spider mites and improving host fitness.
Microorganisms provide many physiological functions to herbivorous hosts. Spider mites (genus Tetranychus) are important agricultural pests throughout the world; however, the composition of the spider mite microbial community, especially gut microbiome, remains unclear. Here, we investigated the bacterial community in five spider mite species and their associated feces by deep sequencing of the 16S rRNA gene. The composition of the bacterial community was significantly different among the five prevalent spider mite species, and some bacterial symbionts showed host‐species specificity. Moreover, the abundance of the bacterial community in spider mite feces was significantly higher than that in the corresponding spider mite samples. However, Flavobacterium was detected in all samples, and represent a “core microbiome”. Remarkably, the maternally inherited endosymbiont Wolbachia was detected in both spider mite and feces. Overall, these results offer insight into the complex community of symbionts in spider mites, and give a new direction for future studies.
BACKGROUNDHerbivore‐associated bacterial symbionts can change plant physiology and influence herbivore fitness. The spider mite Tetranychus truncatus is a notorious pest harboring various bacterial symbionts; however, the effect of bacterial symbionts on host plant physiology remains unclear. Here, we investigated whether infection with the endosymbionts Wolbachia and Spiroplasma altered spider mite performance on tomato plants and affected plant‐induced defenses.RESULTSWolbachia and Spiroplasma were mainly located in the gnathosoma and ovaries of their spider mite hosts. Wolbachia and Spiroplasma significantly improved spider mite reproductive performance in cultivated and wild‐type tomato. However, in plants deficient in jasmonic acid (JA) and salicylic acid (SA), there were no significant differences in reproduction between spider mites infected with Wolbachia and Spiroplasma and uninfected mites. The results indicated that the reproduction benefits conferred by endosymbionts may relate to plant defenses. Both spider mites infected with Wolbachia and Spiroplasma and uninfected mites induced similar levels of JA and SA accumulation in tomato, whereas tomato plants damaged by spider mites infected with both Wolbachia and Spiroplasma showed lower expression levels of JA‐ and SA‐responsive genes than those damaged by uninfected spider mites. In addition, mites infected with Wolbachia and Spiroplasma mites consumed more tomato amino acids compared to uninfected spider mites, which may have contributed to host fecundity.CONCLUSIONSOur results suggest that the reproduction benefits conferred by endosymbionts may be associated with changes in plant defense parameters and the concentrations of plant amino acids. The results highlight the importance of endosymbionts in interactions between spider mites and their host plants. © 2020 Society of Chemical Industry
Colouration in spider mites is due to the presence of carotenoids with diverse colours, including yellows, oranges and reds. Tetranychus urticae has two main colour forms, red and green. Although a ketolase has been implicated in determining the colour, the underlying genetic basis of body colour divergence between the two forms has remained unclear. Based on a combination of comparative transcriptomes and RNA interference, we found that a gene encoding a cytochrome P450 enzyme of the CYP4 clan (CYP389B1) had remarkably high expression in adult females of the red T. urticae, as well as in hybrids obtained by crossing the red and green forms. Down‐regulation of this gene by RNA interference resulted in decreased accumulation of red pigment. Up‐regulation of the expressions of a scavenger receptor gene (SCARB1) and a mitochondrial glycine transporter (SLC25A38) also strongly contributed to red colour development in adult females. Suppressing the mRNA levels of these genes also resulted in reduced accumulation of red pigment in the three other spider mites with red body colour. Our results provide evidence that the body colour divergence between the two forms is caused by different expressions of pigmentation‐related genes, and point to a possible role of a novel cytochrome P450 gene (CYP389B1) in regulating red‐orange body colour. These findings expand the number of candidate cytochrome P450 genes involved in endogenous pigmentation and will help to understand their roles in determining colour patterns in mites and other species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.