ABSTRACT. Aegilops biuncialis can be hybridized with wheat (Triticum spp) and has been used for wheat breeding and genetic studies. The , with a karyotype formula of 2n = 4x = 28 = 14m + 10sm + 4st. Fluorescence in situ hybridization (FISH) and C-banding approaches were used to analyze the A. biuncialis accession chromosomes at the mitotic stage. Based on the C-banding and FISH patterns, all U b and M b chromosomes could be discriminated simultaneously; the three A. biuncialis accessions exhibited similar patterns, suggesting a common origin. The U b genome from A. biuncialis resembled the U genome in the diploid species A. umbellulata, and it may be related to the tetraploid species containing the U genome. The M b genome had some differences compared to the M genome in the diploid species A. comosa, and it may be related to the tetraploid species possessing the M genome. A generalized ideogram was proposed for the A. biuncialis genome, which could be useful for standardized and accurate identification of the A. biuncialis karyotype and chromosomes.
As part of the Synthetic Yeast 2.0 (Sc2.0) project, we designed and synthesized synthetic chromosome I. The total length of synI is ~21.4% shorter than wild-type chromosome I, the smallest chromosome in Saccharomyces cerevisiae. SynI was designed for attachment to another synthetic chromosome due to concerns of potential instability and karyotype imbalance. We used a variation of a previously developed, robust CRISPR-Cas9 method to fuse chromosome I to other chromosome arms of varying length: chrIXR (84 kb), chrIIIR (202 kb) and chrIVR (1 Mb). All fusion chromosome strains grew like wild-type so we decided to attach synI to synIII. Through the investigation of three-dimensional structures of fusion chromosome strains, unexpected loops and twisted structures were formed in chrIII-I and chrIX-III-I fusion chromosomes, which depend on silencing proteinSir3. These results suggest a previously unappreciated 3D interaction between HMR and the adjacent telomere. We used these fusion chromosomes to show that axial element Red1 binding in meiosis is not strictly chromosome size dependent even though Red1 binding is enriched on the three smallest chromosomes in wild-type yeast, and we discovered an unexpected role for centromeres in Red1 binding patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.