Recoil spring is a key part in automatic or semi-automatic weapons re-entry mechanism. Because the stranded wire helical spring (SWHS) has longer fatigue life than an ordinary single-wire cylindrically helical spring, it is often used as a recoil spring in various weapons. Due to the lack of in-depth research on the dynamic characteristics of the current multi-wire recoil spring in recoil and re-entry processes, the fatigue life analysis of the current multi-wire recoil spring usually only considers uniform loading and does not consider dynamic impact loads, which cannot meet modern design requirements. Therefore, this paper proposes a research method for fatigue life prediction analysis of multi-wire recoil spring. Firstly, based on the secondary development of UG, a three-wire recoil spring parameterized model for a gun is established. Secondly, ABAQUS is used to carry out a finite element analysis of its dynamic response characteristics under impact, and experimental verification is performed. Then, based on the stress-time history curve of the dangerous position obtained by finite element analysis, the rain flow counting method is used to obtain the fatigue stress spectrum of recoil spring. Finally, according to the Miner fatigue cumulative damage theory, the fatigue life prediction of the recoil spring based on the S-N curve of the material is compared with experimental results. The research results show that the recoil spring has obvious transient characteristics during the impact of the bolt carrier. The impact velocity is far greater than the propagation speed of the stress wave in the recoil spring, which easily causes the spring coils to squeeze each other. The maximum stress occurs at the fixed end of the spring. And the mean fatigue curve (50% survival rate) is used to predict the life of the recoil spring. The calculation result is 8.6% different from the experiment value, which proves that the method has certain reliability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.