Vehicle interior noise is an important factor affecting ride comfort. To reduce the noise inside the vehicle at the vehicle body design stage, a finite element model of the vehicle body must be established. While taking the first-order global modal of the body-in-white, the maximum sound pressure level of the target point in the vehicle, the body mass, and the side impact conditions into account, the thickness of the body panel as determined via sensitivity analysis is treated as the input variable, and the sample is determined by following the Hamersley experimental design. Specifically, the Elman neural network predicts the noise value in the vehicle, and a vehicle body structure optimization method that comprehensively considers NVH performance and side impact safety is established. The prediction errors of the Elman neural network algorithm were within 3%, which meets the prediction accuracy requirements. To achieve satisfactory restraint performance, the maximum sound pressure level of the target point in the vehicle is reduced by 5.92 dB, and the maximum intrusions of the two points on the B-pillar inner panel are reduced by 31.1 mm and 33.71 mm, respectively. The side impact performance is improved while the noise inside the vehicle is reduced. This study provides a reference method for multidisciplinary research aiming to optimize the design of vehicle body structures.
One of most import noise sources in a jet powered aircraft is turbulent boundary layer (TBL) induced structural vibration. In this chapter, the general model for the prediction of TBL-induced plate vibration and noise is described in detail. Then numerical examples for a typical plate are illustrated. Comparisons of plate vibration and radiated noise between numerical results and wind tunnel test are presented. The effects of structural parameters on modal-averaged radiation efficiency and therefore the radiated noise are discussed. The result indicates that an increment of flow velocity will increase the acoustic radiation efficiency below the hydrodynamic coincidence frequency range. The main reason for this phenomenon is that a higher convection velocity will coincide with lower order modes which have higher radiation efficiencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.