Question answering systems have become prominent in all areas, while in the medical domain it has been challenging because of the abundant domain knowledge. Retrieval based approach has become promising as large pretrained language models come forth. This study focuses on building a retrieval-based medical question answering system, tackling the challenge with large language models and knowledge extensions via graphs. We first retrieve an extensive but coarse set of answers via Elasticsearch efficiently. Then, we utilize semantic matching with pretrained language models to achieve a fine-grained ranking enhanced with named entity recognition and knowledge graphs to exploit the relation of the entities in question and answer. A new architecture based on siamese structures for answer selection is proposed. To evaluate the approach, we train and test the model on two Chinese data sets, NLPCC2017 and cMedQA. We also conduct experiments on two English data sets, TREC-QA and WikiQA. Our model achieves consistent improvement as compared to strong baselines on all data sets.Qualification studies with cMedQA and our in-house data set show that our system gains highly competitive performance. The proposed medical question answering system outperforms baseline models and systems in quantification and qualification evaluations.
Objective. The detection of epidermal growth factor receptor (EGFR) mutation and programmed death ligand-1 (PD-L1) expression status is crucial to determine the treatment strategies for patients with non-small-cell lung cancer (NSCLC). Recently, the rapid development of radiomics including but not limited to deep learning techniques has indicated the potential role of medical images in the diagnosis and treatment of diseases. Methods. Eligible patients diagnosed/treated at the West China Hospital of Sichuan University from January 2013 to April 2019 were identified retrospectively. The preoperative CT images were obtained, as well as the gene status regarding EGFR mutation and PD-L1 expression. Tumor region of interest (ROI) was delineated manually by experienced respiratory specialists. We used 3D convolutional neural network (CNN) with ROI information as input to construct a classification model and established a prognostic model combining deep learning features and clinical features to stratify survival risk of lung cancer patients. Results. The whole cohort (N = 1262) was divided into a training set (N = 882, 70%), validation set (N = 125, 10%), and test set (N = 255, 20%). We used a 3D convolutional neural network (CNN) to construct a prediction model, with AUCs of 0.96 (95% CI: 0.94–0.98), 0.80 (95% CI: 0.72–0.88), and 0.73 (95% CI: 0.63–0.83) in the training, validation, and test cohorts, respectively. The combined prognostic model showed a good performance on survival prediction in NSCLC patients (C-index: 0.71). Conclusion. In this study, a noninvasive and effective model was proposed to predict EGFR mutation and PD-L1 expression status as a clinical decision support tool. Additionally, the combination of deep learning features with clinical features demonstrated great stratification capabilities in the prognostic model. Our team would continue to explore the application of imaging markers for treatment selection of lung cancer patients.
Neurons in a network can be both active or inactive. Given a subset of neurons in a network, is it possible for the subset of neurons to evolve to form an active oscillator by applying some external periodic stimulus? Furthermore, can these oscillator neurons be observable, that is, is it a stable oscillator? This paper explores such possibility, finding that an important property: any subset of neurons can be intermittently co-activated to form a stable oscillator by applying some external periodic input without any condition. Thus, the existing of intermittently active oscillator neurons is an essential property possessed by the networks. Moreover, this paper shows that, under some conditions, a subset of neurons can be fully co-activated to form a stable oscillator. Such neurons are called selectable oscillator neurons. Necessary and sufficient conditions are established for a subset of neurons to be selectable oscillator neurons in linear threshold recurrent neuron networks. It is proved that a subset of neurons forms selectable oscillator neurons if and only if the real part of each eigenvalue of the associated synaptic connection weight submatrix of the network is not larger than one. This simple condition makes the concept of selectable oscillator neurons tractable. The selectable oscillator neurons can be regarded as memories stored in the synaptic connections of networks, which enables to find a new perspective of memories in neural networks, different from the equilibrium-type attractors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.