A set of new data types emerged from functional genomic assays, including ChIP-seq, DNase-seq, FAIRE-seq and others. The results are typically stored as genome-wide intensities (WIG/bigWig files) or functional genomic regions (peak/BED files). These data types present new challenges to big data science. Here, we present GeNemo, a web-based search engine for functional genomic data. GeNemo searches user-input data against online functional genomic datasets, including the entire collection of ENCODE and mouse ENCODE datasets. Unlike text-based search engines, GeNemo's searches are based on pattern matching of functional genomic regions. This distinguishes GeNemo from text or DNA sequence searches. The user can input any complete or partial functional genomic dataset, for example, a binding intensity file (bigWig) or a peak file. GeNemo reports any genomic regions, ranging from hundred bases to hundred thousand bases, from any of the online ENCODE datasets that share similar functional (binding, modification, accessibility) patterns. This is enabled by a Markov Chain Monte Carlo-based maximization process, executed on up to 24 parallel computing threads. By clicking on a search result, the user can visually compare her/his data with the found datasets and navigate the identified genomic regions. GeNemo is available at www.genemo.org.
Multiple sequence alignment (MSA) is an essential cornerstone in bioinformatics, which can reveal the potential information in biological sequences, such as function, evolution and structure. MSA is widely used in many bioinformatics scenarios, such as phylogenetic analysis, protein analysis and genomic analysis. However, MSA faces new challenges with the gradual increase in sequence scale and the increasing demand for alignment accuracy. Therefore, developing an efficient and accurate strategy for MSA has become one of the research hotspots in bioinformatics. In this work, we mainly summarize the algorithms for MSA and its applications in bioinformatics. To provide a structured and clear perspective, we systematically introduce MSA’s knowledge, including background, database, metric and benchmark. Besides, we list the most common applications of MSA in the field of bioinformatics, including database searching, phylogenetic analysis, genomic analysis, metagenomic analysis and protein analysis. Furthermore, we categorize and analyze classical and state-of-the-art algorithms, divided into progressive alignment, iterative algorithm, heuristics, machine learning and divide-and-conquer. Moreover, we also discuss the challenges and opportunities of MSA in bioinformatics. Our work provides a comprehensive survey of MSA applications and their relevant algorithms. It could bring valuable insights for researchers to contribute their knowledge to MSA and relevant studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.