Domestic chickens (Gallus gallus domesticus) fulfill various roles ranging from food and entertainment to religion and ornamentation. To survey its genetic diversity and trace the history of domestication, we investigated a total of 4938 mitochondrial DNA (mtDNA) fragments including 2843 previously published and 2095 de novo units from 2044 domestic chickens and 51 red junglefowl (Gallus gallus). To obtain the highest possible level of molecular resolution, 50 representative samples were further selected for total mtDNA genome sequencing. A fine-gained mtDNA phylogeny was investigated by defining haplogroups A-I and W-Z. Common haplogroups A-G were shared by domestic chickens and red junglefowl. Rare haplogroups H-I and W-Z were specific to domestic chickens and red junglefowl, respectively. We re-evaluated the global mtDNA profiles of chickens. The geographic distribution for each of major haplogroups was examined. Our results revealed new complexities of history in chicken domestication because in the phylogeny lineages from the red junglefowl were mingled with those of the domestic chickens. Several local domestication events in South Asia, Southwest China and Southeast Asia were identified. The assessment of chicken mtDNA data also facilitated our understanding about the Austronesian settlement in the Pacific.
Based on mitochondrial cytochrome b gene sequence analysis, the history of true sheep (Ovis) began approximately 3.12 million years ago (MYA). The evolution of Ovis resulted in three generally accepted genetic groups: Argaliforms, Moufloniforms, and Pachyceriforms. The Pachyceriforms of the subgenus Pachyceros comprise the thin-horn sheep Ovis nivicola (snow sheep), Ovis dalli (Dall and Stone sheep), and Ovis canadensis (Rocky Mountain and desert bighorn). North America wild sheep (O. canadensis and O. dalli) evolved separately from Eurasian wild sheep and diverged from each other about 1.41 MYA. Ancestral stock that gave rise to snow sheep, Moufloniforms, and Argaliforms occurred 2.3 MYA, which then gave rise to two different extant lines of snow sheep that diverged from each other about 1.96 MYA. The more recent nivicola line is genetically closer to the North American wild sheep and may represent a close association during the refugium when Alaska and Siberia were connected by the Bering land bridge. The earlier period of evolution of the Pachyceriforms suggests they may have first evolved in Eurasia, the oldest ancestor then giving rise to North American wild sheep, and that a canadensis-like ancestor most likely gave rise to nivicola. Cytogenetic analysis further validates that the standard diploid number for modern nivicola is 52.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.