Despite being a common figure of speech, hyperbole is under-researched in Figurative Language Processing. In this paper, we tackle the challenging task of hyperbole generation to transfer a literal sentence into its hyperbolic paraphrase. To address the lack of available hyperbolic sentences, we construct HYPO-XL, the first large-scale English hyperbole corpus containing 17,862 hyperbolic sentences in a non-trivial way. Based on our corpus, we propose an unsupervised method for hyperbole generation that does not require parallel literalhyperbole pairs. During training, we fine-tune BART (Lewis et al., 2020) to infill masked hyperbolic spans of sentences from HYPO-XL. During inference, we mask part of an input literal sentence and over-generate multiple possible hyperbolic versions. Then a BERT-based ranker selects the best candidate by hyperbolicity and paraphrase quality. Automatic and human evaluation results show that our model is effective at generating hyperbolic paraphrase sentences and outperforms several baseline systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.