In a dynamic environment with wind forces and tornadoes, eliminating fluctuations and noise is critical to get the optimal results. Avoiding collision and simultaneous arrival of multiple unmanned aerial vehicles (multi-UAVs) is also a great problem. This paper addresses the cooperative path planning of multi-UAVs with in a dynamic environment. To deal with the aforementioned issues, we combine the maximum–minimum ant colony optimization (MMACO) and Cauchy Mutant (CM) operators to make a bio-inspired optimization algorithm. Our proposed algorithm eliminates the limitations of classical ant colony optimization (ACO) and MMACO, which has the issues of the slow convergence speed and a chance of falling into local optimum. This paper chooses the CM operator to enhance the MMACO algorithm by comparing and examining the varying tendency of fitness function of the local optimum position and the global optimum position when taking care of multi-UAVs path planning problems. It also makes sure that the algorithm picks the shortest route possible while avoiding collision. Additionally, the proposed method is more effective and efficient when compared to the classic MMACO. Finally, the simulation experiment results are performed under the dynamic environment containing wind forces and tornadoes.
This study proposes a collective motion and self-organization control of a swarm of 10 UAVs, which are divided into two clusters of five agents each. A cluster is a group of UAVs in a dedicated area and multiple clusters make a swarm. This paper designs the 3D model of the whole environment by applying graph theory. To address the aforesaid issues, this paper designs a hybrid meta-heuristic algorithm by merging the particle swarm optimization (PSO) with the multi-agent system (MAS). First, PSO only provides the best agents of a cluster. Afterward, MAS helps to assign the best agent as the leader of the nth cluster. Moreover, the leader can find the optimal path for each cluster. Initially, each cluster contains agents at random positions. Later, the clusters form a formation by implementing PSO with the MAS model. This helps in coordinating the agents inside the nth cluster. However, when two clusters combine and make a swarm in a dynamic environment, MAS alone is not able to fill the communication gap of n clusters. This study does it by applying the Vicsek-based MAS connectivity and synchronization model along with dynamic leader selection ability. Moreover, this research uses a B-spline curve based on simple waypoint defined graph theory to create the flying formations of each cluster and the swarm. Lastly, this article compares the designed algorithm with the NSGA-II model to show that the proposed model has better convergence and durability, both in the individual clusters and inside the greater swarm.
Cooperative path planning of multiple unmanned aerial vehicles is a complex task. The collision avoidance and coordination between multiple unmanned aerial vehicles is a global optimal issue. This research addresses the path planning of multi-colonies with multiple unmanned aerial vehicles in dynamic environment. To observe the model of whole scenario, we combine maximum–minimum ant colony optimization and differential evolution to make metaheuristic optimization algorithm. Our designed algorithm, controls the deficiencies of present classical ant colony optimization and maximum–minimum ant colony optimization, has the contradiction among the excessive information and global optimization. Moreover, in our proposed algorithm, maximum–minimum ant colony optimization is used to lemmatize the pheromone and only best ant of each colony is able to construct the path. However, the path escape by maximum–minimum ant colony optimization and it treated as the object for differential evolution constraints. Now, it is ensuring to find the best global colony, which provides optimal solution for the entire colony. Furthermore, the proposed approach has an ability to increase the robustness while preserving the global convergence speed. Finally, the simulation experiment results are performed under the rough dynamic environment containing some high peaks and mountains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.