To determine serum cytokine profiles in Graves' disease (GD) patients with or without active and inactive thyroid associated ophthalmopathy (TAO), we recruited 65 subjects: 10 GD only (without TAO), 25 GD + active TAO, 20 GD + TAO, and 10 healthy controls. Liquid chip assay was used to measure serum Th1/Th2/Th17 cytokines including IFN-γ (interferon-gamma), TNF-α (tumor necrosis factor-alpha), IL-1α (interleukin-1 alpha), IL-1Ra (IL-1 receptor antagonist), IL-2, IL-4, IL-6, and IL-17 and two chemokines: RANTES (regulated upon activation, normal T cell expressed and secreted) and IP-10 (IFN-γ-induced protein 10). Serum levels of TSH (thyroid stimulating hormone) receptor autoantibodies (TRAb) were measured using an enzyme linked immunosorbent assay. Compared with healthy controls, TAO patients showed significantly elevated serum levels of IFN-γ, TNF-α, IL-1α, IL-4, IL-6, IL-17, and IP-10. Comparing active and inactive TAO, serum Th1 cytokines IFN-γ and TNF-α were elevated in active TAO, while serum Th2 cytokine IL-4 was elevated in inactive TAO. Serum Th17 cytokine IL-17 was elevated in GD but reduced in both active and inactive TAO. A positive correlation was found between TRAb and IFN-γ, TNF-α, IL-1α, IL-2, IL-4, and IL-6. Taken together, serum Th1/Th2/Th17 cytokines and chemokines reflect TAO disease activity and may be implicated in TAO pathogenesis.
Context Although metabolic profiles appear to play an important role in menopausal bone loss, the functional mechanisms by which metabolites influence bone mineral density (BMD) during menopause are largely unknown. Objective We aimed to systematically identify metabolites associated with BMD variation and their potential functional mechanisms in peri-/post-menopausal women. Design and Methods We performed serum metabolomic profiling and whole-genome sequencing for 517 perimenopausal (16%) and early postmenopausal (84%) women aged 41 to 64 years in this cross-sectional study. Partial least squares (PLS) regression and general linear regression analysis were applied to identify BMD-associated metabolites, and weighted gene co-expression network analysis was performed to construct co-functional metabolite modules. Furthermore, we performed Mendelian randomization analysis to identify causal relationships between BMD-associated metabolites and BMD variation. Finally, we explored the effects of a novel prominent BMD-associated metabolite on bone metabolism through both in vivo/in vitro experiments. Results Twenty metabolites and a co-functional metabolite module (consisting of fatty acids) were significantly associated with BMD variation. We found dodecanoic acid (DA), within the identified module, causally decreased total hip BMD. Subsequently, the in vivo experiments might support that dietary supplementation with DA could promote bone loss, as well as increase the osteoblast and osteoclast numbers in normal/ovariectomized mice. DA treatment differentially promoted osteoblast and osteoclast differentiation, especially for osteoclast differentiation at higher concentrations in vitro (e.g.,10, 100μM). Conclusions This study sheds light on metabolomic profiles associated with postmenopausal osteoporosis risk, highlighting the potential importance of fatty acids, as exemplified by DA, in regulating BMD.
This method of calculating orbital soft tissue volumes based on MRI data and 3D reconstruction is both reliable and accurate as it yielded significant differences in tissue volume between patients with TAO and healthy individuals.
Dyslipidemia (DL) is closely related to osteoporosis (OP), while the exact common genetic mechanisms are still largely unknown. We proposed to use novel genetic analysis methods with pleiotropic information to identify potentially novel and/or common genes for the potential shared pathogenesis associated with OP and/or DL. We assessed the pleiotropy between plasma lipid (PL) and femoral neck bone mineral density (FNK BMD). We jointly applied the conditional false discovery rate (cFDR) method and the genetic analysis incorporating pleiotropy and annotation (GPA) method to the summary statistics provided by genome-wide association studies (GWASs) of FNK BMD (n = 49,988) and PL (n = 188,577) to identify potentially novel and/or common genes for BMD/PL. We found strong pleiotropic enrichment between PL and FNK BMD. Two hundred and forty-five PL SNPs were identified as potentially novel SNPs by cFDR and GPA. The corresponding genes were enriched in gene ontology (GO) terms "phospholipid homeostasis" and "chylomicron remnant clearance". Three SNPs (rs2178950, rs9939318, and rs9368716) might be the pleiotropic ones and the corresponding genes NLRC5 (rs2178950) and TRPS1 (rs9939318) were involved in NF-κB signaling pathway and Wnt signaling pathway as well as inflammation and innate immune processes. Our study validated the pleiotropy between PL and FNK BMD, and corroborated the reliability and high-efficiency of cFDR and GPA methods in further analyses of existing GWASs with summary statistics. We identified potentially common and/or novel genes for PL and/or FNK BMD, which may provide new insight and direction for further research.
Although gut microbiota influences osteoporosis risk, the individual species involved, and underlying mechanisms, are unknown. We performed integrative analyses in a Chinese cohort with metagenomics/targeted metabolomics/whole-genome sequencing. Bacteroides vulgatus was found negatively associated with bone mineral density (BMD), this association was validated in US Caucasians. Serum valeric acid was positively associated with BMD, and B.vulgatus causally downregulated it. Ovariectomized mice fed B.vulgatus had decreased bone formation and increased bone resorption, lower BMD and poorer bone micro-structure. Valeric acid suppressed NF-κB p65 protein production (pro-inflammatory), and enhanced IL-10 mRNA expression (anti-inflammatory), leading to suppressed maturation of osteoclast-like cells, and enhanced maturation of osteoblasts in vitro. B.vulgatus and valeric acid represent promising targets for osteoporosis prevention/treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.